一套分布式IM即时通讯系统的技术选型和架构设计

本文由冰河分享,作者博客 binghe.gitcode.host,原题“这套分布式IM即时通讯系统如何写到简历上?我给你整理好了!”,本文有修订和改动。

1、引言

分布式IM即时通讯系统本质上就是对线上聊天和用户的管理。

针对聊天本身来说,最核心的需求就是:发送文字、图片、文件、语音、视频、消息缓存、消息存储、消息未读、已读、撤回,离线消息、历史消息、单聊、群聊,多端同步,以及其他一些需求。

对用户管理来说,存在的需求包含:添加好友、查看好友列表、删除好友、查看好友信息、创建群聊、加入群聊、查看群成员信息、退出群聊、修改群昵称、拉人进群、踢人出群、解散群聊、填写群公告、修改群备注以及其他用户相关的需求等。

为了更好的理解分布式IM即时通讯系统的设计,我站在架构师的角度,在充分了解系统需求、业务流程和技术流程后,从全局视角为系统设定方案目标,对技术方案进行选型,对系统进行总体架构设计和分层架构设计,并梳理清楚发送消息的交互链路、单聊和群聊的交互链路。希望对你有帮助。

2、方案目标

在进行技术选型与总体架构设计之前,需要明确一个事项,就是系统无论采用哪种方案,采用哪种架构设计都需要明确这种方案的业务目标、技术目标和架构目标,并在研发过程中不断评估系统的总体性能表现,发现系统瓶颈并不断进行优化。

总体上,我们搭建和开发的分布式IM即时通讯系统,需要满足如下方案目标。

具体是:

1)业务目标:满足需求设计篇章中的各类需求场景;

2)技术目标:支持无限扩容,百万用户同时在线聊天;

3)架构目标:高并发、高性能、高可用、可监控、可预警、可伸缩,支持无限扩展。

3、技术选型

在技术选型上,除了采用SpringBoot等基础框架外,也会采用容器化方案。

同时,考虑到为了尽量降低技术门槛,在整个分布式IM即时通讯系统的技术选型中,主要采用市面上比较流行的技术框架和方案。

具体选型如下所示:

1)开发框架:SpringBoot、SpringCloud、SpringCloud Alibaba、Dubbo;

2)缓存:Redis分布式缓存+Guava本地缓存;

3)数据库:MySQL、TiDB、HBase;

4)流量网关:OpenResty+Lua;

5)业务网关:SpringCloud Gateway + Sentinel;

6)持久层框架:MyBatis、Mybatis-Plus;

7)服务配置、服务注册与发现:Nacos;

8)消息中间件:RocketMQ;

9)网络通信:Netty

10)文件存储:Minio;

11)日志可视化治理:ELK;

12)容器化管理:Swarm、Portainer;

13)监控:Prometheus、Grafana;

14)前端:Vue;

15)单元测试:Junit;

16)基准测试:JMH;

17)压力测试:JMeter。

4、初步架构设计

对于IM即时通讯系统来说,涵盖了即时通讯后端服务、大后端平台、SDK接入服务、OpenAI接入服务、大前端UI,我相信不少小伙伴多多少少能够画出IM即时通讯系统的架构图,大致如下图所示。

其实,这种这种架构设计也比较常见,在这种架构设计中,Kong/Openresty/Nginx只做负载均衡和反向代理,研发人员更多的是关注业务层和基础层的开发,流量比较小时,这种架构设计一般不会有什么问题。但是一旦流量比较大,用户调用后端平台的接口发送消息时,即时通讯SDK同步调用即时通讯服务的接口就会出现性能问题。

因为每个终端同时只能与一个IM即时通讯服务实例建立连接,如果大量的用户终端恰好都与一个IM即时通讯服务建立连接,那即时通讯SDK频繁同步调用同一个IM即时通讯服务的接口就会出现性能瓶颈。此时,出现性能瓶颈时,不仅仅会影响到IM即时通讯服务,也会对后端平台接收请求的业务造成一定的影响。

5、架构设计优化

既然上节图中所示的架构设计存在性能瓶颈,那我们如何进行优化呢?

为此我们在前图基础上进行了优化,优化后的架构如下图所示。

对比两图可以看出,在屏蔽掉技术实现细节的前提下,我们将对业务的校验和流量管控进行前置化,放大Kong/OpenResty/Nginx的职责,使得这些软件不仅具备反向代理和负载均衡的功能,还能实现限流、黑白名单、流量管控、业务校验等功能。

也就是说,在这种架构模式下,我们充分发挥了整个分布式IM即时通讯系统的入口职责,充分利用Kong/OpenResty/Nginx的高并发、高吞吐量的能力,尽量将大部分无效请求挡在整个系统之外。例如,用户在没登录系统的前提下,就尝试调用发送消息、添加好友、添加群组等等接口。这样会大大减轻后台平台的业务压力。

除了在Kong/OpenResty/Nginx中实现限流、黑白名单、流量管控、业务校验等功能外,我们还引入了业务网关集群,实现限流、降级、熔断、流控、校验、鉴权等功能,进一步保证下游系统的稳定性和安全。

为了解决大量用户终端恰好连接到同一个IM即时通讯服务实例,IM即时通讯SDK频繁调用同一个IM即时通讯服务实例的接口造成的性能问题。我们在IM即时通讯服务SDK与IM即时通讯服务之间引入了RocketMQ集群

IM即时通讯服务集群中的每一个IM即时通讯服务实例在集群中都有一个唯一的ID,并且每个IM即时通讯服务实例在启动后,只会监听RocketMQ中与自身ID相关的Topic。这样每个IM即时通讯服务只会收到与自身ID相关的Topic中的消息,不会接收所有的消息。

当用户登录系统后,就会与IM即时通讯服务建立长连接,并且会以用户ID和终端为Key,以IM即时通讯服务的ID为value,将其存储到分布式缓存中。同时,会以用户ID和终端为Key,以用户终端与IM即时通讯服务建立的长连接为value,将其存储到IM即时通讯服务本地内存中。

当用户调用后端平台的接口发消息时,会带上目标用户的ID,并且在IM即时通讯SDK中会指定用户登录的终端设备,最终会通过IM即时通讯SDK向RocketMQ发送消息。

此时IM即时通讯SDK会根据目标用户ID和终端从分布式缓存中获取目标用户连接的IM即时通讯服务的ID,并向此ID相关的Topic发送消息。此时与目标用户建立长连接的IM即时通讯服务就会接收到RocketMQ中的消息,随后根据用户ID和终端从本地缓存中获取到与用户终端建立的长连接,并基于此长连接向用户推送消息。

另外,在实际实现中,为了避免大量用户同时只连接IM即时通讯服务集群中的某一个服务实例,会对用户连接的IP、浏览器指纹、手机设备等做Hash和取模运算,使其尽量均匀分布到集群中的每一个服务实例上。

那么问题来了,这种架构设计还有进一步优化的空间吗?

6、容器化架构设计

为进一步增强分布式IM即时通讯系统的性能、可用性和弹性伸缩能力,我们可以对分布式IM即时通讯系统进行容器化架构设计,如下图所示。

可以看到,我们对分布式IM即时通讯系统的架构设计进行了进一步优化,采用了容器化架构设计。在原有架构的基础上,我们进行了如下改进和优化。

1)基础支撑服务:基础支撑服务会由各种基础中间件、数据存储服务、以及监控服务实现,包含:MySQL数据库、TiDB数据库、HBase、Redis缓存、RocketMQ消息队列、Prometheus监控和Portainer容器管理等基础中间件实现,基础支撑服务会对整个分布式IM即时通讯系统提供最基础的数据、传输、监控和容器管理等服务。

2)容器化:在容器化层面,会通过Docker、Swarm和Portainer实现,其中,会基于Swarm和Portainer对容器化进行管理。

3)其他基础性功能实现:除了上述分层架构外,对于建设分布式IM即时通讯系统来说,还要考虑异常监控、服务注册与发现、可视化、服务降级与兜底数据、服务限流、服务容灾、容量规划与扩缩容和全链路压测等。

7、DDD分层业务架构设计

在分布式IM即时通讯系统中,不管是大后端平台,还是IM即时通讯服务,我们都会对业务层的代码采用分层业务架构。

这里,可以借鉴DDD的分层架构思想,将代码总体上分成展示层、应用层、领域层和基础设施层四个层次。

但是,考虑到分布式IM即时通讯系统的特殊性,又不会严格按照DDD的原则来设计代码分层,具体按照如下图所示。

可以看到,分布式IM即时通讯系统会借鉴DDD的设计思想,但是不会完全按照DDD的方式进行设计。

1)展示层:展示层,也叫做用户UI层,是DDD设计的最上层,对外提供API接口,接收客户端请求,解析参数,返回结果数据,并对异常进行处理。

2)应用层:应用层,也叫做Application层,应用层主要处理容易变化的业务场景,可对相关的事件、调度和其他聚合操作进行相关的处理。

3)领域层:领域层,也叫做Domain层,领域层可以说是DDD设计的精髓所在,它是将业务系统中相对不变的部分抽象出来封装成领域模型。在分布式IM即时通讯系统的设计中,领域层基本不会依赖其他层,也不会依赖基础设施层,这里是与DDD设计存在区别的地方。

4)基础设施层:基础设施层,也叫做Infrastructure层,基础设施层会对其他各层提供通用的基础能力,在分布式IM即时通讯系统中,就包括了缓存、通用工具类、消息、系统的持久化机制等。

8、总体IM消息交互链路

在分布式IM即时通讯系统中,我们忽略掉其他一些细节信息,重点关注下发送消息的交互链路逻辑。不管是单聊还是群聊,最终都需要通过IM即时通讯服务将消息推送给用户的终端。此时发送消息的流程如下图所示。

可以看到:用户在分布式IM即时通讯系统发送消息时,不管是单聊还是群聊,最终的消息都会推送到用户登录的终端设备上。假设此时用户A给用户B发送消息,或者用户A和用户B在同一个群组,用户A向群组发送消息,用户B接收消息的主要流程如下。

具体是:

1)用户A调用后端平台的接口向用户B发送消息,并且发送的消息中会带有用户B的ID以及终端信息;

2)后端平台将消息缓存起来,并且会将消息异步写入消息库;

3)后端平台从Redis中获取用户B连接的IM即时通讯服务的ID;

4)后端平台获取到用户B连接的IM即时通讯服务的ID后,会向RocketMQ中用户B连接的IM即时通讯服务ID对应的Topic发送消息;

5)IM即时通讯服务会监听自身服务ID对应的RocketMQ中Topic的消息,此时,用户B连接的IM即时通讯服务会接收到消息;

6)IM即时通讯服务接收到消息后,会根据用户B的ID以及终端信息从缓存中获取用户B与IM即时通讯服务建立的连接,并且通过这个连接向用户B推送消息。

要实现如上发送消息的流程,前提是要满足如下条件:

1)后端平台满足分布式条件,可随时横向扩展;

2)IM即时通讯服务满足分布式条件,可随时横向扩展;

3)每个启动的IM即时通讯服务实例在集群中都有一个唯一的ID;

4)每个IM即时通讯服务,都只监听自身ID对应的RocketMQ中Topic的消息;

5)用户登录分布式IM即时通讯系统后,会与IM即时通讯服务建立长连接,并且会根据用户ID和所在的终端缓存长连接,同时会根据用户ID和所在的终端将连接的IM即时通讯服务的ID缓存到Redis;

6)用户发送消息时,会根据目标用户的ID和终端从Redis中获取IM即时通讯服务的ID,进而向当前IM即时通讯服务的ID对应的RocketMQ的Topic发送消息;

7)对应的IM即时通讯服务监听并接收到RocketMQ消息后,会根据目标用户的ID和终端从缓存中获取到用户的连接信息,向目标用户推送消息。

9、IM单聊交互链路

单聊就是在分布式IM即时通讯系统中,一个用户直接与另外一个用户聊天,也就是一对一的聊天。在这种场景下,很有可能单聊的两个用户中,出现用户不在线的情况。

例如:用户A给用户B发送消息时,用户B可能不在线。

此时,我们就需要将用户A向用户B发送的消息存储起来。

其实,在我们实现的分布式IM即时通讯系统中,无论把用户B是否在线,都会存储消息记录。当用户B登录系统后,将消息同步给用户B,如下图所示。

可以看到,用户A向用户B发送消息时:

1)如果用户B在线,就可以按照发送消息的交互链路向用户B发送消息了;

2)如果用户B不在线,此时就无法向用户B正常推送消息。当用户B登录分布式IM即时通讯系统后,就会调用后端平台的接口拉取所有未读消息,并通过用户B在线流程向用户B推送消息。

10、IM群聊交互链路

群聊就是在分布式IM即时通讯系统中,多个用户在同一个群组中进行聊天。

此时在发送消息时,我们可以通过群组ID找出群内所有在线的用户,将消息即时发送给在线的用户。

那些未在线的用户就按照单聊未在线的用户进行处理,如下图所示。

可以看到,群聊的交互链路流程如下所示:

1)用户调用后端平台的接口向群组发送消息;

2)后端平台将消息缓存并异步写入消息库;

3)由于是向群组发送消息,群里有多个用户,此时就会从Redis中获取所有用户连接的IM即时通讯服务ID列表;

4)对用户按照服务ID分组,将相同服务ID下的用户分在同一个逻辑分组里,方便后续推送消息,并且会记录未在线的用户列表;

5)循环向每个服务ID对应的RocketMQ中的Topic发送消息;

6)广播处理未在线用户的未读消息ID;

7)IM即时通讯服务会监听自身服务ID对应的Topic,会随时接收推送到自身服务的消息;

8)当IM即时通讯服务接收到消息后,此时用户掉线,或者用户不在线,向用户推送消息就会失败,或者未查询到用户与IM即时通讯服务建立的连接,就不会向用户推送消息;

9)当用户登录分布式IM即时通讯系统后,会从后端平台拉取历史(离线)消息,并通过用户在线的流程,向用户推送消息;

好了,看到这里,你明白如何设计一个高度可扩展的分布式IM即时通讯系统了吗?

11、相关资料

[1] 浅谈IM系统的架构设计

[2] 简述移动端IM开发的那些坑:架构设计、通信协议和客户端

[3] 一套海量在线用户的移动端IM架构设计实践分享(含详细图文)

[4] 一套原创分布式即时通讯(IM)系统理论架构方案

[5] 移动端IM中大规模群消息的推送如何保证效率、实时性?

[6] 一套亿级用户的IM架构技术干货(上篇):整体架构、服务拆分等

[7] 一套亿级用户的IM架构技术干货(下篇):可靠性、有序性、弱网优化等

[8] 从新手到专家:如何设计一套亿级消息量的分布式IM系统

[9] 企业微信的IM架构设计揭秘:消息模型、万人群、已读回执、消息撤回等

[10] 融云技术分享:全面揭秘亿级IM消息的可靠投递机制

[11] 阿里IM技术分享(三):闲鱼亿级IM消息系统的架构演进之路

[12] 基于实践:一套百万消息量小规模IM系统技术要点总结

[13] 跟着源码学IM(十):基于Netty,搭建高性能IM集群(含技术思路+源码)

[14] 一套十万级TPS的IM综合消息系统的架构实践与思考

[15] 得物从0到1自研客服IM系统的技术实践之路

[16] 海量用户IM聊天室的架构设计与实践

[17] 史上最通俗Netty入门长文:基本介绍、环境搭建、动手实战

[18] 新手入门:目前为止最透彻的的Netty高性能原理和框架架构解析

[19] 写给初学者:Java高性能NIO框架Netty的学习方法和进阶策略

[20] 手把手教你用Netty实现网络通信程序的心跳机制、断线重连机制

[21] 史上最强Java NIO入门:担心从入门到放弃的,请读这篇!

(本文已同步发布于:http://www.52im.net/thread-4564-1-1.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容