基于分子指纹的大规模分子聚类

新药早期研发的应用场景中, 常常需要对虚拟化合物库进行聚类,从不同类别中挑选出多样性好的代表化合物,但视聚类规模对使用的算法与硬件有不同的要求,这里列出两种实测后,对内存与聚类时间比较友好的算法分享。在化合物规模小于10万时,推荐使用RDkit方法,在化合物规模远大于10万时,推荐使用ChemFP。

1. RDkit (推荐<10 万化合物)

RDKit实现了Butina聚类算法,基于文献 Unsupervised Database Clustering Based on Daylight's Fingerprint and Tanimoto Similarity: A Fast and Automated Way to Cluster Small and Large Data Sets', JCICS, 39, 747-750 (1999)

from rdkit import Chem
from rdkit.Chem import AllChem

def ClusterFps(fps,cutoff=0.2):
    from rdkit import DataStructs
    from rdkit.ML.Cluster import Butina

    # first generate the distance matrix:
    dists = []
    nfps = len(fps)
    for i in range(1,nfps):
        sims = DataStructs.BulkTanimotoSimilarity(fps[i],fps[:i])
        dists.extend([1-x for x in sims])

    # now cluster the data:
    cs = Butina.ClusterData(dists,nfps,cutoff,isDistData=True)
    return cs

定义函数后我们读取化合物

ms = [x for x in Chem.SDMolSupplier('ZINC_example.sdf')]
print (len(ms))
output: 10000

计算指纹并聚类,cutoff是指Tanimoto 相似度的阈值 ,差异度大于cutoff的化合物会被分到不同的类别中

fps = [AllChem.GetMorganFingerprintAsBitVect(x,2,1024) for x in ms
clusters=ClusterFps(fps,cutoff=0.4)

可视化结果看看,

print(clusters[100])
output: (553, 297, 547)

from rdkit.Chem import Draw
from rdkit.Chem.Draw import IPythonConsole
m1 = ms[553]
m2 = ms[297]
m3 = ms[547]
mols=(m1,m2,m3)
Draw.MolsToGridImage(mols)
图一、该类别下的三个分子

RDkit的聚类算法可以支持10万级别的化合物库,然而在内存为125 GB的服务器上测试20万分子的聚类时,可以看到随着聚类的时间增长,占用的内存也不停增加,最终在半个小时后,聚类20万分子由于内存溢出而崩溃。

2. ChemFP ( > 10 万化合物)

Chemfp 是一个商用的python库,但其中的免费版本也包含分子聚类功能,其ChemFP文档地址见链接。在python2.7的环境下,通过命令行安装chemFP 1.6.1免费版

# 创建python 2.7名为chemfp的环境
conda create -n chemfp python=2.7
#在该环节中安装所需python包
conda activate chemfp
python2.7 -m pip install chemfp
# 安装所需的RDkit支持,更早版本的也可以,例如RDKit 2013.03, RDKit 2016.09, RDKit 2017.03, RDKit 2017.09 (dev)
conda install  -C rdkit rdkit=2018.09.3

安装成功之后,就可以开始聚类了,我们准备文件test_100K_cluster.smi

# chemFP支持多种输入格式,这里采用SMILES的文件,包含index与SMILES两列
index=0,
with open ('test_100K_cluster.smi', 'w') as f:
    for smi in ZINC_list:
            f.write(smi+'\t'+ str(index) + '\n')
            index+=1

命令行中调用rdkit2fps模块将刚刚的smi文件转为指纹,采用MORGAN分子指纹,半径为2,结果存在test-mol.fps

rdkit2fps test_100K_cluster.smi --morgan --radius 2 > test-mol.fps

真正开始聚类之前,我们下载一个聚类函数的脚本放在你的工作文件夹下。为防止下载链接失效,脚本内容也放在了文章最末。
命令行中运行该脚本。threshold = 0.6 可按项目需求调节,默认0.8

python taylor_butina.py --profile --threshold 0.6 test-mol.fps -o test-mol.clusters

输出的test-mol.cluster是一个 文本文件,以我们在smi文件中赋予的index来展示聚类结果,该文本文件的后处理脚本请自行撰写。

实测下来,在一百万化合物数据上,实现聚类仅花费了10分钟。 相比于RDkit自带算法10万化合物的半小时聚类,速度快了30倍以上。

阶段 耗时 内存占用
生成指纹文件 1 min NA
Load time 2.9 sec 299 MB
Similarity time 548.5 sec 818 MB
Clustering time 2.9 sec 261 MB

Total time: 555.3 sec
得到的聚类结果是
0.6 similarity 98195 clusters

附录:应用于ChemFP的taylor_butina.py脚本内容,

#!/usr/bin/env python

from __future__ import print_function

# An implementation of the Taylor-Butina clustering algorithm for
# chemical fingerprints.

# Robin Taylor, "Simulation Analysis of Experimental Design Strategies
# for Screening Random Compounds as Potential New Drugs and
# Agrochemicals", J. Chem. Inf. Comput. Sci., 1995, 35 (1), pp 59-67.
# DOI: 10.1021/ci00023a009
#
# Darko Butina, "Unsupervised Data Base Clustering Based on Daylight's
# Fingerprint and Tanimoto Similarity: A Fast and Automated Way To
# Cluster Small and Large Data Sets", J. Chem. Inf. Comput. Sci.,
# 1999, 39 (4), pp 747-750
# DOI: 10.1021/ci9803381

# Copyright 2017 Andrew Dalke <dalke@dalkescientific.com>
# Distributed under the "MIT license"
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

__version__ = "1.0"

import sys
import argparse
import time

# I use the third-party "psutil" package to get memory use information.
try:
    import psutil
except ImportError:
    # If it isn't available, then don't report memory use.
    psutil = None
    def get_memory_use():
        return None
else:
    import os
    _process = psutil.Process(os.getpid())
    def get_memory_use():
        info = _process.memory_info()
        return info.rss # or info.vms?

# This requires chemfp. See http://chemfp.com/
import chemfp
from chemfp import search
        
# Convert the number of bytes into a more human-readable form.
def human_memory(n):
    if n < 1024:
        return "%d B" % (n,)
    for unit, denom in (("KB", 1024), ("MB", 1024**2),
                         ("GB", 1024**3), ("PB", 1024**4)):
        f = n/denom
        if f < 10.0:
            return "%.2f %s" % (f, unit)
        if f < 100.0:
            return "%d %s" % (round(f, 1), unit)
        if f < 1000.0:
            return "%d %s" % (round(f, 0), unit)
    return ">1TB ?!?"

##### Measure the current time and memory use, so I can generate a delta report.
class ProfileStats(object):
    def __init__(self, timestamp, memory_use):
        self.timestamp = timestamp
        self.memory_use = memory_use

def get_profile_stats():
    return ProfileStats(time.time(), get_memory_use())

def get_profile_time():
    return ProfileStats(time.time(), None)

def profile_report(title, start, end):
    dt = end.timestamp - start.timestamp
    if start.memory_use is None or end.memory_use is None:
        # Memory use not available.
        sys.stderr.write("%s time: %.1f sec\n" % (title, dt))
    else:
        delta_memory = end.memory_use - start.memory_use
        memory_str = human_memory(delta_memory)
        sys.stderr.write("%s time: %.1f sec memory: %s\n" % (title, dt, memory_str))

######

# The results of the Taylor-Butina clustering
class ClusterResults(object):
    def __init__(self, true_singletons, false_singletons, clusters):
        self.true_singletons = true_singletons
        self.false_singletons = false_singletons
        self.clusters = clusters

# The clustering implementation
def taylor_butina_cluster(similarity_table):
    # Sort the results so that fingerprints with more hits come
    # first. This is more likely to be a cluster centroid. Break ties
    # arbitrarily by the fingerprint id; since fingerprints are
    # ordered by the number of bits this likely makes larger
    # structures appear first.:

    # Reorder so the centroid with the most hits comes first.  (That's why I do
    # a reverse search.)  Ignore the arbitrariness of breaking ties by
    # fingerprint index

    centroid_table = sorted(((len(indices), i, indices)
                                 for (i,indices) in enumerate(similarity_table.iter_indices())),
                            reverse=True)

    # Apply the leader algorithm to determine the cluster centroids
    # and the singletons:

    # Determine the true/false singletons and the clusters
    true_singletons = []
    false_singletons = []
    clusters = []

    seen = set()
    for (size, fp_idx, members) in centroid_table:
        if fp_idx in seen:
            # Can't use a centroid which is already assigned
            continue
        seen.add(fp_idx)

        # Figure out which ones haven't yet been assigned
        unassigned = set(members) - seen

        if not unassigned:
            false_singletons.append(fp_idx)
            continue

        # this is a new cluster
        clusters.append( (fp_idx, unassigned) )
        seen.update(unassigned)

    # Return the results:
    return ClusterResults(true_singletons, false_singletons, clusters)

def report_cluster_results(cluster_results, arena, outfile):
    true_singletons = cluster_results.true_singletons
    false_singletons = cluster_results.false_singletons
    clusters = cluster_results.clusters

    # Sort the singletons by id.
    print(len(true_singletons), "true singletons", file=outfile)
    print("=>", " ".join(sorted(arena.ids[idx] for idx in true_singletons)),
          file=outfile)
    print(file=outfile)

    print(len(false_singletons), "false singletons", file=outfile)
    print("=>", " ".join(sorted(arena.ids[idx] for idx in false_singletons)),
          file=outfile)
    print(file=outfile)

    # Sort so the cluster with the most compounds comes first,
    # then by alphabetically smallest id
    def cluster_sort_key(cluster):
        centroid_idx, members = cluster
        return -len(members), arena.ids[centroid_idx]

    clusters.sort(key=cluster_sort_key)

    print(len(clusters), "clusters", file=outfile)
    for centroid_idx, members in clusters:
        print(arena.ids[centroid_idx], "has", len(members), "other members", file=outfile)
        print("=>", " ".join(arena.ids[idx] for idx in members), file=outfile)


#### Command-line driver

p = parser = argparse.ArgumentParser(
    description="An implementation of the Taylor-Butina clustering algorithm using chemfp")
p.add_argument("--threshold", "-t", type=float, default=0.8,
               help="threshold similarity (default: 0.8)")
p.add_argument("--output", "-o", metavar="FILENAME",
               help="output filename (default: stdout)")
p.add_argument("--profile", action="store_true",
               help="report time and memory use")
p.add_argument("--version", action="version",
               version="spam %(prog)s " + __version__ + " (using chemfp " + chemfp.__version__ + ")")
p.add_argument("fingerprint_filename", metavar="FILENAME")

# Turn the --output option into a file object and close function.
def _close_nothing():
    pass

def open_output(parser, filename):
    ## open a file, or use None to use stdout
    if filename is None:
        return sys.stdout, _close_nothing
    try:
        outfile = open(filename, "w")
    except IOError as err:
        parser.error("Cannot open --output file: %s" % (err,))
    return outfile, outfile.close

## 

def main(args=None):
    args = parser.parse_args(args)

    if args.profile and psutil is None:
        sys.stderr.write("WARNING: Must install the 'psutil' module to see memory statistics.\n")

    # Load the fingerprints
    start_stats = get_profile_stats()
    try:
        arena = chemfp.load_fingerprints(args.fingerprint_filename)
    except IOError as err:
        sys.stderr.write("Cannot open fingerprint file: %s" % (err,))
        raise SystemExit(2)

    # Make sure I can generate output before doing the heavy calculations
    outfile, outfile_close = open_output(parser, args.output)

    try:
        load_stats = get_profile_stats()

        # Generate the NxN similarity matrix for the given threshold
        similarity_table = search.threshold_tanimoto_search_symmetric(
            arena, threshold = args.threshold)
        similarity_stats = get_profile_stats()

        # Do the clustering
        cluster_results = taylor_butina_cluster(similarity_table)
        cluster_stats = get_profile_stats()

        # Report the results
        report_cluster_results(cluster_results, arena, outfile)

        # Report the time and memory use.
        if args.profile:
            print("#fingerprints:", len(arena), "#bits/fp:", arena.num_bits, "threshold:", args.threshold,
                  "#matches:", similarity_table.count_all(), file=sys.stderr)
            profile_report("Load", start_stats, load_stats)
            profile_report("Similarity", load_stats, similarity_stats)
            profile_report("Clustering", similarity_stats, cluster_stats)
            profile_report("Total", start_stats, get_profile_time())
    finally:
        outfile_close()

if __name__ == "__main__":
    main()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容