关于八皇后问题以及回溯递归思想

大家好,我是“Stephen·谢”,本文以古老的八皇后问题的文字解释和代码实现,将递归回溯的思想概念介绍给大家。


国际象棋中的皇后比中国象棋里的大车还厉害,皇后能横向,纵向和斜向移动,在这三条线上的其他棋子都可以被吃掉。所谓八皇后问题就是:将八位皇后放在一张8x8的棋盘上,使得每位皇后都无法吃掉别的皇后,(即任意两个皇后都不在同一条横线,竖线和斜线上),问一共有多少种摆法。此问题是在1848年由棋手马克思·贝瑟尔提出的,后面陆续有包括高斯等大数学家们给出自己的思考和解法,所以此问题不只是有年头了,简直比82年的拉菲还有年头,我们今天不妨尝尝这老酒。

我们先举例来理解一下这个问题的场景到底是什么样子的,下面的绿色格子是一个皇后在棋盘上的“封锁范围”,其他的皇后不能放置在这些绿格子中:

一个皇后的封锁范围

我们再放入一个皇后,看一下两个皇后的“封锁范围”(绿格子不能放):

两个皇后的封锁范围

如此继续下去,能安放下一位皇后的位置越来越少,那么我们最终如何能安放完这8位皇后呢?

首先我们看一下特别暴力的方法:从8x8的格子里选8个格子,放皇后,然后测试是否满足条件,若满足则结果加1,否则换8个格子继续试。很显然,64选8,并不是个小数字,十亿级别的次数,够暴力。如果换成围棋的棋盘,画面就会太美而不敢算。

稍加分析,我们可以得到另一个不那么暴力的方法:显然,每行每列最多只能有一位皇后,如果基于这个事实再进行暴力破解,那结果会好很多。安排皇后时,第一行有8种选法,一旦第一行选定,假设选为(1,i),那么第二行只能选(2,j),其中,j不等于i,所以有7种选法。以此类推,需要穷举的情况有8!=40320种,比十亿级别的小很多了。

这看起来已经不错了,但尝试的次数还是随着问题规模按阶乘水平提高的,我们仍然不满意,所以,“递归回溯”的思想就被提出了,专治这种问题。

为了理解“递归回溯”的思想,我们不妨先将4位皇后打入冷宫,留下剩下的4位安排进4x4的格子中且不能互相打架,有多少种安排方法呢?如果按照上面方式穷举,需要4!=24次尝试吗?

现在我们把第一个皇后放在第一个格子,被涂黑的地方是不能放皇后的:

放第1个皇后

第二行的皇后只能放在第三格或第四格,比如我们放在第三格:

放第2个皇后

这样一来前面两位皇后已经把第三行全部锁死了,第三位皇后无论放在第三行的哪里都难逃被吃掉的厄运。于是在第一个皇后位于第一格,第二个皇后位于第三格的情况下此问题无解。所以我们只能返回上一步,来给2号皇后换个位置:

给2号皇后换个位置

此时,第三个皇后只有一个位置可选。当第三个皇后占据第三行蓝色空位时,第四行皇后无路可走,于是发生错误,则返回上层调整3号皇后,而3号皇后也别无可去,继续返回上层调整2号皇后,而2号皇后已然无路可去,则再继续返回上层调整1号皇后,于是1号皇后往后移一格位置如下,再继续往下安排:

回溯重新安排1号皇后

上面的图例正是回溯递归思想的展现,然而知易行难,在代码中我们怎样来实现这种算法呢?实现的代码有很多种,我们找一个最简单的来举例吧:

递归回溯的核心代码

我们来重点看一下这段代码(这段代码虽短,但真的非常非常重要,是整个算法的核心和灵魂):

第一次进来,row=0,意思是要在第一行摆皇后,只要传进来的row参数不是8,表明还没出结果,就都不会走if里面的return,那么就进入到for循环里面,column从0开始,即第一列。此时第一行第一列肯定合乎要求(即check方法肯定通过),能放下皇后,因为还没有任何其他皇后来干扰。

关键是check方法通过了之后,在if里面又会调用一下自己(即递归),row加了1,表示摆第二行的皇后了。第二行的皇后在走for循环的时候,分两种情况,第一种情况:for循环没走到头时就有通过check方法的了,那么这样就顺理成章地往下走再调用一下自己(即再往下递归),row再加1(即摆第三行的皇后了,以此类推)。第二种情况:for循环走到头了都没有通过check方法的,说明第二行根本一个皇后都摆不了,也触发不了递归,下面的第三行等等后面的就更不用提了,此时控制第一行皇后位置的for循环column加1,即第一行的皇后往后移一格,即摆在第一行第二列的位置上,然后再往下走,重复上述逻辑。

注意,一定要添加清零的代码,它只有在皇后摆不下去的时候会执行清0的动作(避免脏数据干扰),如果皇后摆放很顺利的话从头到尾是不会走这个请0的动作的,因为已经提前走if里面的return方法结束了。

总之,这段核心代码很绕,原理一定要想通,想个十几二十遍差不多就能理解其中的原理了,递归回溯的思想也就不言而喻了。八皇后问题一共有92种情况,下面是用Java实现的完整代码:

public static int[][] arry=new int[8][8];//棋盘,放皇后
public static int map=0;//存储方案结果数量

public static void main(String[] args) {
    // TODO Auto-generated method stub

    System.out.println("八皇后问题");
    findQueen(0);
    System.out.println("八皇后问题共有:"+map+"种可能");
}

public static void findQueen(int i){//寻找皇后节点
    if(i>7){//八皇后的解  
        map++;
        print();//打印八皇后的解
        return;
    }
    
    for(int m=0;m<8;m++){//深度回溯,递归算法
        if(check(i,m)){//检查皇后摆放是否合适
            arry[i][m]=1;
            findQueen(i+1);
            arry[i][m]=0;//清零,以免回溯的时候出现脏数据
            }
    }   
}

public static boolean check(int k,int j){//判断节点是否合适
    for(int i=0;i<8;i++){//检查行列冲突
         if(arry[i][j]==1){
                return false;
         }
    }
    for(int i=k-1,m=j-1; i>=0 && m>=0; i--,m--){//检查左对角线
        if(arry[i][m]==1){
                return false;
        }
    }
    for(int i=k-1,m=j+1; i>=0 && m<=7; i--,m++){//检查右对角线
        if(arry[i][m]==1){
                return false;
        }
    }
    return true;
}

public static void print(){//打印结果
    System.out.print("方案"+map+":"+"\n");
    for(int i=0;i<8;i++){
        for(int m=0;m<8;m++){
            if(arry[i][m]==1){  
                //System.out.print("皇后"+(i+1)+"在第"+i+"行,第"+m+"列\t");
                System.out.print("o ");
            }
            else{
                    System.out.print("+ ");
            }
        }
        System.out.println();
    }
    System.out.println();
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 回溯算法 回溯法:也称为试探法,它并不考虑问题规模的大小,而是从问题的最明显的最小规模开始逐步求解出可能的答案,并...
    fredal阅读 13,636评论 0 89
  • 什么是八皇后问题? 八皇后问题是一个古老的问题,于1848年由一位国际象棋棋手提出:在8×8格的国际象棋上摆放八个...
    Soujiro阅读 2,042评论 0 3
  • 八皇后问题是一个经典的递归回溯问题。 描述 八皇后问题是在一个 8*8 的棋盘上放置皇后,要求其放置后满足同一行,...
    JYGod丶阅读 2,353评论 1 3
  • 八皇后问题问题描述:八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔...
    药药耀耀阅读 2,071评论 0 0
  • 【旅行雪乡故事】雪龙峰其实就是大秃顶子山的最高峰,海拔1691米,从大雪谷门前徒步到雪龙峰顶10公里左右,纯玩的游...
    勒克儿阅读 523评论 1 3