iOS YUV与RGB&YUV算法

数字媒体压缩

        为缩小数字媒体文件的大小,我们需要对其使用压缩技术,一般来说我们所欣赏的媒体内容都进行过一定程度的压缩,无论在电视上的视频,蓝光碟片,网页上的视频流还是冲iTunes Store购买的资源,我们其实都是和这些内容的原始文件的压缩格式在打交到,对数字媒体进行压缩可以大幅度缩小文件的尺寸,但是通常会在资源的质量上有小幅可见的衰减,

色彩的二次采样

        视频数据是使用称之为YCbCr颜色模式,它也常称为YUV,虽然YUV术语并不准确,但是读起来比较方便,大部分的软件开发者都更熟悉RGB颜色模式,即每个像素点都由红,绿,蓝三个颜色组合而成,YCbCr或者是YUV则使用色彩(颜色)通道UV替换了像素的亮度通道.

此图来源于AVFoundation

        从上图中我们可以看到图片的细节都保存在亮度的通道中,假设世界上没有阳光,我们的眼睛是看不到任何的东西,如果去除亮度,剩下的就是一副灰度图片,我们在看整合的色彩通道中关于图片的所有细节都丢失了,这是由于我们眼睛对亮度的敏感度要高于颜色,所以,在YUV中,我们可以通过大幅减少存储在每个像素点中的颜色信息,而不致于图片的质量严重受损,这个减少颜色数据的过程就称之为色彩的二次采样。

我们平时所说的4:4:4和4:2:2以及4:2:0到底指的是什么,以及它的由来?

        色彩的二次采样一般发生在取样时,一些专业的相机以4:4:4的参数捕捉图像,但大部分情况下对于图片的拍摄使用4:2:2的方式进行的,面向消费者的摄像头装置,比如iPhone手机上的摄像头,通常是以4:2:0的方式进行拍摄,即使经过大量层级的二次抽样之后仍然可以捕捉到高质量的图片,iPhone手机上拍出来的高质量视频就是很好的例证,

1.RGB的颜色编码

        RGB 三个字⺟分别代表了 红(Red)、绿(Green)、蓝(Blue),这三种颜⾊称为 三原⾊,将它们以不同的⽐例相加,可以产⽣多种多样的颜⾊。


一个像素点的RGB

        在图像显示中,⼀张1280 * 720 ⼤⼩的图⽚,就代表着它有1280 * 720 个像素点。其中每⼀个像素点的颜⾊显示都采⽤RGB 编码⽅法,将RGB 分别取不同的值,就会展示不同的颜⾊。

        RGB 图像中,每个像素点都有红、绿、蓝三个原⾊,其中每种原⾊都占⽤8 bit,也就是⼀个字节,那么⼀个像素点也就占⽤24 bit,也就是三个字节。

        ⼀张1280 * 720 ⼤⼩的图⽚,就占⽤1280 * 720 * 3 / 1024 / 1024 = 2.63 MB 存储空间

2.YUV的颜色编码

        YUV 颜⾊编码采⽤的是 明亮度 和 ⾊度 来指定像素的颜⾊。其中,Y 表示明亮度(Luminance、Luma),⽽U 和V 表示⾊度(Chrominance、Chroma)。⽽⾊度⼜定义了颜⾊的两个⽅⾯:⾊调和饱和度


YUV表示一个像素点

        和RGB 表示图像类似,每个像素点都包含Y、U、V 分量。但是它的Y 和UV 分量是可以分离的,如果没有UV 分量⼀样可以显示完整的图像,只不过是⿊⽩的。对于YUV 图像来说,并不是每个像素点都需要包含了Y、U、V 三个分量,根据不同的采样格式,可以每个Y 分量都对应⾃⼰的UV 分量,也可以⼏个Y 分量共⽤UV 分量

传说中的4:4:4

        在4:4:4的模式下,色彩的全部信息被保全下来,如图:

相邻的四个像素点

        相邻的四个像素点ABCD,每个像素点有自己的YUV,在色彩的二次采样的过程中,分别保留自己的YUV,称之为4:4:4;

传说中的4:2:2

四个相邻的像素点

        如图ABCD四个相邻的像素点,A(Y0,U0,V0),B(Y1,U1,V1),C(Y2,U2,V2),D(Y3,U3,V3),当二次采样的时候,A采样的时候保留(Y0,U0),B保留(Y1,V1),C保留(Y2,U2),D保留(Y3,V3);也就是说,每个像素点的Y(明亮度)保留其本身的值,而U和V的值是每间隔一个采样,而最终就变成:

映射后的结果

        也就是说A借B的V1,B借A的U0,C借D的V3,D借C的U2,这就是传说中的4:2:2,⼀张1280 * 720 ⼤⼩的图⽚,在YUV 4:2:2 采样时的⼤⼩为:

(1280 * 720 * 8 + 1280 * 720 * 0.5 * 8 * 2)/ 8 / 1024 / 1024 = 1.76 MB 。

        可以看到YUV 4:2:2 采样的图像⽐RGB 模型图像节省了三分之⼀的存储空间,在传输时占⽤的带宽也会随之减少

传说中的4:2:0

        在上面说到的4:2:2中我们可以看到相邻的两个像素点的UV是左右互相借的,那可不可以上下左右借了,答案当然是可以的,


4:2:0流程

        YUV 4:2:0 采样,并不是指只采样U 分量⽽不采样V 分量。⽽是指,在每⼀⾏扫描时,只扫描⼀种⾊度分量(U 或者V),和Y 分量按照2 : 1 的⽅式采样。⽐如,第⼀⾏扫描时,YU 按照2 : 1 的⽅式采样,那么第⼆⾏扫描时,YV 分量按照2:1 的⽅式采样。对于每个⾊度分量来说,它的⽔平⽅向和竖直⽅向的采样和Y 分量相⽐都是2:1 。假设第⼀⾏扫描了U 分量,第⼆⾏扫描了V 分量,那么需要扫描两⾏才能够组成完整的UV 分量

        从映射出的像素点中可以看到,四个Y 分量是共⽤了⼀套UV 分量,⽽且是按照2*2 的⼩⽅格的形式分布的,相⽐YUV 4:2:2 采样中两个Y 分量共⽤⼀套UV 分量,这样更能够节省空间。⼀张1280 * 720 ⼤⼩的图⽚,在YUV 4:2:0 采样时的⼤⼩为:

(1280 * 720 * 8 + 1280 * 720 * 0.25 * 8 * 2)/ 8 / 1024 / 1024 = 1.32 MB 相对于2.63M节省了一半的空间

RGB — YUV 颜⾊编码转换

        对于图像显示器来说,它是通过RGB 模型来显示图像的,⽽在传输图像数据时⼜是使⽤YUV 模型,这是因为YUV 模型可以节省带宽。因此就需要采集图像时将RGB 模型转换到YUV 模型,显示时再将YUV 模型转换为RGB 模型。

        RGB 到YUV 的转换,就是将图像所有像素点的R、G、B 分量转换到Y、U、V 分量。

        Y = 0.299 * R + 0.587 * G + 0.114 * B 

        U = -0.147 * R - 0.289 * G + 0.436 * B 

        V = 0.615 * R - 0.515 * G - 0.100 * B

        R = Y + 1.14 * V 

        G = Y - 0.39 * U - 0.58 * V 

        B = Y + 2.03 * U

上面为固定的转换公式,不做死记硬背,如有错误,请大佬批评教育

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351