Golang 实现卡特兰数

Golang 实现卡特兰数

卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。前20项为:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190。

原理

  1. 令h(0)=1,h(1)=1,catalan数满足递推式:

    h(n)= h(0)h(n-1)+h(1)h(n-2) + ... + h(n-1)*h(0) (n>=2)

    例如:

    h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2

    h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5

  2. 另类递推式:

    h(n)=h(n-1)*(4*n-2)/(n+1)

  3. 递推关系的解为:

    h(n)=C(2n,n)/(n+1) (n=0,1,2,…)

  4. 递推关系的另类解为:

    h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)

性质

卡塔兰数的一般项公式为:

一般项公式.png

Cn的另一个表达形式为:
另一个表达式.png

递推关系:

递推关系.png

它也满足


这提供了一个更快速的方法来计算卡塔兰数。

应用

实质上都是递推等式的应用

其实我们只需要记住它的一般项公式就好了,平时用到一般只需要用到它。

  • 括号化

    矩阵连乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

  • 出栈次序

    一个栈无穷大的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?(h(n)个)

    证明:

    令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有

    二进制数.png

个,下面考虑不满足要求的数目。

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而
进栈.png

证毕。

  • Cn表示有n个节点组成不同构二叉树的方案数。**

  • Cn表示有2n+1个节点组成不同满二叉树(full binary tree)的方案数。**

  • dyck word

    Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的前缀字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:

    XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

  • n对括号正确匹配数目

    将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:

    ((())) ()(()) ()()() (())() (()())

  • 其他应用还用很多,可以去百度百科和维基百科上看,这里就不赘述了。

用 Golang 实现

import (
    "fmt"
    "math/big"
)
// 由于阶乘结果的数超出 int64 的范围,所以用到了 math/big 包来实现大数。


// 输出前20个卡特兰数
func main() {
    for i := int64(0); i < 20; i++ {
        fmt.Println(catalan(i))
    }
}
// 求卡特兰数
func catalan(n int64) *big.Int {
    one := big.NewInt(1) // 过渡值

    denominator := factorial(2 * n)
    divisor := one.Mul(factorial(n+1), factorial(n))
    return one.Div(denominator, divisor)
}
// 阶乘
func factorial(n int64) *big.Int {
    sum := big.NewInt(1)
    for i := int64(1); i <= n; i++ {
        sum.Mul(sum, big.NewInt(i))
    }
    return sum
}

参考

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容