pyspark系列--读写dataframe

来源:https://blog.csdn.net/suzyu12345/article/details/79673473

1. 连接spark

2. 创建dataframe

2.1. 从变量创建

2.2. 从变量创建

2.3. 读取json

2.4. 读取csv

2.5. 读取MySQL

2.6. 从pandas.dataframe创建

2.7. 从列式存储的parquet读取

2.8. 从hive读取

3. 保存数据

3.1. 写到csv

3.2. 保存到parquet

3.3. 写到hive

3.4. 写到hdfs

3.5. 写到mysql

1. 连接sparkfrom pyspark.sql import SparkSession

spark=SparkSession \
        .builder \
        .appName('my_first_app_name') \
        .getOrCreate()

2. 创建dataframe

2.1. 从变量创建

# 生成以逗号分隔的数据
stringCSVRDD = spark.sparkContext.parallelize([
    (123, "Katie", 19, "brown"),
    (234, "Michael", 22, "green"),
    (345, "Simone", 23, "blue")
])
# 指定模式, StructField(name,dataType,nullable)
# 其中:
#   name: 该字段的名字,
#   dataType:该字段的数据类型,
#   nullable: 指示该字段的值是否为空
from pyspark.sql.types import StructType, StructField, LongType, StringType  # 导入类型

schema = StructType([
    StructField("id", LongType(), True),
    StructField("name", StringType(), True),
    StructField("age", LongType(), True),
    StructField("eyeColor", StringType(), True)
])

# 对RDD应用该模式并且创建DataFrame
swimmers = spark.createDataFrame(stringCSVRDD,schema)

# 利用DataFrame创建一个临时视图
swimmers.registerTempTable("swimmers")

# 查看DataFrame的行数
swimmers.count()

2.2. 从变量创建

# 使用自动类型推断的方式创建dataframe

data = [(123, "Katie", 19, "brown"),
        (234, "Michael", 22, "green"),
        (345, "Simone", 23, "blue")]
df = spark.createDataFrame(data, schema=['id', 'name', 'age', 'eyccolor'])
df.show()
df.count()

2.3. 读取json

# 读取spark下面的示例数据

file = r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\people.json"
df = spark.read.json(file)
df.show()

2.4. 读取csv

# 先创建csv文件
import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.rand(5,5),columns=['a','b','c','d','e']).\
    applymap(lambda x: int(x*10))
file=r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\random.csv"
df.to_csv(file,index=False)

# 再读取csv文件
monthlySales = spark.read.csv(file, header=True, inferSchema=True)
monthlySales.show()

2.5. 读取MySQL

# 此时需要将mysql-jar驱动放到spark-2.2.0-bin-hadoop2.7\jars下面
# 单机环境可行,集群环境不行
# 重新执行
df = spark.read.format('jdbc').options(
    url='jdbc:mysql://127.0.0.1',
    dbtable='mysql.db',
    user='root',
    password='123456' 
    ).load()
df.show()

# 也可以传入SQL语句

sql="(select * from mysql.db where db='wp230') t"
df = spark.read.format('jdbc').options(
    url='jdbc:mysql://127.0.0.1',
    dbtable=sql,
    user='root',
    password='123456' 
    ).load()
df.show()

2.6. 从pandas.dataframe创建

# 如果不指定schema则用pandas的列名
df = pd.DataFrame(np.random.random((4,4)))
spark_df = spark.createDataFrame (df,schema=['a','b','c','d']) 

2.7. 从列式存储的parquet读取

# 读取example下面的parquet文件
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\users.parquet"
df=spark.read.parquet(file)
df.show()

2.8. 从hive读取

# 如果已经配置spark连接hive的参数,可以直接读取hive数据
spark = SparkSession \
        .builder \
        .enableHiveSupport() \      
        .master("172.31.100.170:7077") \
        .appName("my_first_app_name") \
        .getOrCreate()

df=spark.sql("select * from hive_tb_name")
df.show()

3. 保存数据

3.1. 写到csv

# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)

# 写到csv
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.csv"
spark_df.write.csv(path=file, header=True, sep=",", mode='overwrite')

3.2. 保存到parquet

# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)

# 写到parquet
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.parquet"
spark_df.write.parquet(path=file,mode='overwrite')

3.3. 写到hive

# 打开动态分区
spark.sql("set hive.exec.dynamic.partition.mode = nonstrict")
spark.sql("set hive.exec.dynamic.partition=true")

# 使用普通的hive-sql写入分区表
spark.sql("""
    insert overwrite table ai.da_aipurchase_dailysale_hive 
    partition (saledate) 
    select productid, propertyid, processcenterid, saleplatform, sku, poa, salecount, saledate 
    from szy_aipurchase_tmp_szy_dailysale distribute by saledate
    """)

# 或者使用每次重建分区表的方式
jdbcDF.write.mode("overwrite").partitionBy("saledate").insertInto("ai.da_aipurchase_dailysale_hive")
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_hive", None, "append", partitionBy='saledate')

# 不写分区表,只是简单的导入到hive表
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_for_ema_predict", None, "overwrite", None)

3.4. 写到hdfs

# 数据写到hdfs,而且以csv格式保存
jdbcDF.write.mode("overwrite").options(header="true").csv("/home/ai/da/da_aipurchase_dailysale_for_ema_predict.csv")

3.5. 写到mysql

# 会自动对齐字段,也就是说,spark_df 的列不一定要全部包含MySQL的表的全部列才行

# overwrite 清空表再导入
spark_df.write.mode("overwrite").format("jdbc").options(
    url='jdbc:mysql://127.0.0.1',
    user='root',
    password='123456',
    dbtable="test.test",
    batchsize="1000",
).save()

# append 追加方式
spark_df.write.mode("append").format("jdbc").options(
    url='jdbc:mysql://127.0.0.1',
    user='root',
    password='123456',
    dbtable="test.test",
    batchsize="1000",
).save()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350