来源:https://blog.csdn.net/suzyu12345/article/details/79673473
1. 连接spark
2. 创建dataframe
2.1. 从变量创建
2.2. 从变量创建
2.3. 读取json
2.4. 读取csv
2.5. 读取MySQL
2.6. 从pandas.dataframe创建
2.7. 从列式存储的parquet读取
2.8. 从hive读取
3. 保存数据
3.1. 写到csv
3.2. 保存到parquet
3.3. 写到hive
3.4. 写到hdfs
3.5. 写到mysql
1. 连接sparkfrom pyspark.sql import SparkSession
spark=SparkSession \
.builder \
.appName('my_first_app_name') \
.getOrCreate()
2. 创建dataframe
2.1. 从变量创建
# 生成以逗号分隔的数据
stringCSVRDD = spark.sparkContext.parallelize([
(123, "Katie", 19, "brown"),
(234, "Michael", 22, "green"),
(345, "Simone", 23, "blue")
])
# 指定模式, StructField(name,dataType,nullable)
# 其中:
# name: 该字段的名字,
# dataType:该字段的数据类型,
# nullable: 指示该字段的值是否为空
from pyspark.sql.types import StructType, StructField, LongType, StringType # 导入类型
schema = StructType([
StructField("id", LongType(), True),
StructField("name", StringType(), True),
StructField("age", LongType(), True),
StructField("eyeColor", StringType(), True)
])
# 对RDD应用该模式并且创建DataFrame
swimmers = spark.createDataFrame(stringCSVRDD,schema)
# 利用DataFrame创建一个临时视图
swimmers.registerTempTable("swimmers")
# 查看DataFrame的行数
swimmers.count()
2.2. 从变量创建
# 使用自动类型推断的方式创建dataframe
data = [(123, "Katie", 19, "brown"),
(234, "Michael", 22, "green"),
(345, "Simone", 23, "blue")]
df = spark.createDataFrame(data, schema=['id', 'name', 'age', 'eyccolor'])
df.show()
df.count()
2.3. 读取json
# 读取spark下面的示例数据
file = r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\people.json"
df = spark.read.json(file)
df.show()
2.4. 读取csv
# 先创建csv文件
import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.rand(5,5),columns=['a','b','c','d','e']).\
applymap(lambda x: int(x*10))
file=r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\random.csv"
df.to_csv(file,index=False)
# 再读取csv文件
monthlySales = spark.read.csv(file, header=True, inferSchema=True)
monthlySales.show()
2.5. 读取MySQL
# 此时需要将mysql-jar驱动放到spark-2.2.0-bin-hadoop2.7\jars下面
# 单机环境可行,集群环境不行
# 重新执行
df = spark.read.format('jdbc').options(
url='jdbc:mysql://127.0.0.1',
dbtable='mysql.db',
user='root',
password='123456'
).load()
df.show()
# 也可以传入SQL语句
sql="(select * from mysql.db where db='wp230') t"
df = spark.read.format('jdbc').options(
url='jdbc:mysql://127.0.0.1',
dbtable=sql,
user='root',
password='123456'
).load()
df.show()
2.6. 从pandas.dataframe创建
# 如果不指定schema则用pandas的列名
df = pd.DataFrame(np.random.random((4,4)))
spark_df = spark.createDataFrame (df,schema=['a','b','c','d'])
2.7. 从列式存储的parquet读取
# 读取example下面的parquet文件
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\users.parquet"
df=spark.read.parquet(file)
df.show()
2.8. 从hive读取
# 如果已经配置spark连接hive的参数,可以直接读取hive数据
spark = SparkSession \
.builder \
.enableHiveSupport() \
.master("172.31.100.170:7077") \
.appName("my_first_app_name") \
.getOrCreate()
df=spark.sql("select * from hive_tb_name")
df.show()
3. 保存数据
3.1. 写到csv
# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)
# 写到csv
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.csv"
spark_df.write.csv(path=file, header=True, sep=",", mode='overwrite')
3.2. 保存到parquet
# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)
# 写到parquet
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.parquet"
spark_df.write.parquet(path=file,mode='overwrite')
3.3. 写到hive
# 打开动态分区
spark.sql("set hive.exec.dynamic.partition.mode = nonstrict")
spark.sql("set hive.exec.dynamic.partition=true")
# 使用普通的hive-sql写入分区表
spark.sql("""
insert overwrite table ai.da_aipurchase_dailysale_hive
partition (saledate)
select productid, propertyid, processcenterid, saleplatform, sku, poa, salecount, saledate
from szy_aipurchase_tmp_szy_dailysale distribute by saledate
""")
# 或者使用每次重建分区表的方式
jdbcDF.write.mode("overwrite").partitionBy("saledate").insertInto("ai.da_aipurchase_dailysale_hive")
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_hive", None, "append", partitionBy='saledate')
# 不写分区表,只是简单的导入到hive表
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_for_ema_predict", None, "overwrite", None)
3.4. 写到hdfs
# 数据写到hdfs,而且以csv格式保存
jdbcDF.write.mode("overwrite").options(header="true").csv("/home/ai/da/da_aipurchase_dailysale_for_ema_predict.csv")
3.5. 写到mysql
# 会自动对齐字段,也就是说,spark_df 的列不一定要全部包含MySQL的表的全部列才行
# overwrite 清空表再导入
spark_df.write.mode("overwrite").format("jdbc").options(
url='jdbc:mysql://127.0.0.1',
user='root',
password='123456',
dbtable="test.test",
batchsize="1000",
).save()
# append 追加方式
spark_df.write.mode("append").format("jdbc").options(
url='jdbc:mysql://127.0.0.1',
user='root',
password='123456',
dbtable="test.test",
batchsize="1000",
).save()