HTTP 与 TCP

TCP 连接

手机等一些移动设备,能够使用联网功能是因为手机底层实现了 TCP/IP 协议,可以使手机终端通过无线网络建立 TCP 连接。TCP 协议可以对上层网络提供接口,使上层网络数据的传输建立在"无差别"的网络之上。

在具体介绍之前,先来弄清一些基本概念:

SYN(synchronous)是TCP/IP建立连接时使用的握手信号,表示建立连接

FIN 表示关闭连接

ACK(Acknowledgement)既确认字符,在数据通信中,接收站发给发送站的一种传输类控制字符。表示发来的数据已确认接收无误,表示响应

LISTEN 表示服务器端的某个 SOCKET 处于监听状态,可以接受连接了。

MIME类型 在把输出结果传送到浏览器上的时候,浏览器必须启动适当的应用程序来处理这个输出文档。这可以通过多种类型 MIME(多功能网际邮件扩充协议)来完成。在 HTTP 中,MIME 类型被定义在 Content-Type header 中。

URL 统一资源定位符(URL)也被称为网页地址,是因特网上标准的资源的地址,现在几乎所有的URI都是URL。

第一部分是协议(或称为服务方式)

第二部分是存有该资源的主机IP地址(有时也包括端口号)

第三部分是主机资源的具体位置(如目录和文件名等)

第一部分和第三部分之间用** '://'** 符号隔开,第二部分和第三部分用** '/'**符号分隔。第一部分和第二部分是不可缺少的,第三部分有时也可以省略。

TCP 三层握手

我们要和服务端连接 TCP 连接,需要通过三次连接,包括:请求确认建立连接。即传说中的"三次握手协议":

TCP

第一次握手:客户端发送 syn 包(syn = j)到服务器,并进入 SYN_SEND 状态,等待服务器确认

第二次握手:服务器收到 syn 包,必须确认客户的 SYN(ack = j + 1),同时自己也发送一个 SYN 包(syn = k),即 SYN + ACK 包,此时服务器进入 SYN_RECV 状态

第三次握手:客户端收到服务器的 SYN + ACK 包,向服务器发送确认包 ACK(ack=k+1),此包发送完毕,客户端和服务器进入 ESTABLISHED 状态,完成三次握手

握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。

理想状态下,TCP 连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。

但是由于 TCP 连接是全双工的,所以每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个 FIN 来终止这个方向的连接。收到一个 FIN 只意味着这一方向上没有数据流动,一个 TCP 连接在收到一个 FIN 后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。

TCP 四次挥手

断开连接时服务器和客户端均可以主动发起断开 TCP 连接的请求,断开过程需要经过"四次挥手"

第一次挥手:TCP 客户端发送一个 FIN,用来关闭客户到服务器的数据传送。

第二次挥手:服务器收到这个 FIN,它发回一个 ACK,确认序号为收到的序号加 1。和 SYN 一样,一个 FIN 将占用一个序号。

第三次挥手:服务器关闭客户端的连接,发送一个 FIN 给客户端。

第四次挥手:客户端发回 ACK 报文确认,并将确认序号设置为收到序号加 1。

那么这里就会有一个问题了,为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?

这是因为服务端的 LISTEN 状态下的 SOCKET 当收到 SYN 报文的建连请求后,它可以把 ACK 和 SYN(ACK 起应答作用,而 SYN 起同步作用)放在一个报文里来发送。

但关闭连接时,当收到对方的 FIN 报文通知时,它仅仅表示对方没有数据发送给你了,但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭 SOCKET

也即你可能还需要发送一些数据给对方之后,再发送 FIN 报文给对方来表示你同意现在可以关闭连接了,所以它这里的 ACK 报文和 FIN 报文多数情况下都是分开发送的.

HTTP 协议

HTTP 协议即超文本传送协议(Hypertext Transfer Protocol),定义了浏览器怎样向万维网服务器请求万维网文档,以及服务器怎样把文档传送给浏览器。

从层次的角度看,HTTP 是面向(transaction-oriented)应用层协议,它是万维网上能够可靠地交换文件(包括文本,声音,图像等各种多媒体文件)的重要基础,也是 Web 联网的基础,也是手机联网常用的协议之一,HTTP 协议是建立在 TCP 协议之上的一种应用。

工作流程

一次 HTTP 操作称为一个事务,其工作过程可分为四步

1)首先客户机与服务器需要建立连接,只要单击某个超级链接,HTTP 的工作开始。

2)建立连接后,客户机发送一个请求给服务器,请求方式的格式为:统一资源标识符(URL)、协议版本号、后边是 MIME 信息包括请求装饰符、客户机信息和可能的内容。

3)服务器接到请求后,给予相应的响应信息,其格式为一个状态行,包括信息的协议版本号、一个成功或错误的代码,后边是 MIME 信息包含服务器信息、实体信息和可能的内容。

4)客户端接收服务器所返回的信息通过浏览器显示在用户的显示屏上,然后客户机与服务器断开连接。

如果在以上过程中的某一步出现错误,那么产生错误的信息将返回到客户端,由显示屏输出,对于用户来说,这些过程是由 HTTP 自己完成的,用户只要用鼠标点击,等待信息显示就可以了。

这样就限制了使用 HTTP 协议,无法实现在客户端没有发起请求的时候,服务器将消息推送给客户端。
需要注意的是:HTTP 协议是一个无状态的协议,同一个客户端的这次请求和上次请求是没有对应关系

HTTP 连接最显著的特点是客户端发送的每次请求都需要服务器回送响应(永远都是客户端发送请求,服务器回送响应),在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为"一次连接"。

1)在HTTP 1.0中,客户端的每次请求都要求建立一次单独的连接,在处理完本次请求后,就自动释放连接。

2)在HTTP 1.1中则可以在一次连接中处理多个请求,并且多个请求可以重叠进行,不需要等待一个请求结束后再发送下一个请求。

由于 HTTP 在每次请求结束后都会主动释放连接,因此 HTTP 连接是一种"短连接",要保持客户端程序的在线状态,需要不断地向服务器发起连接请求。

通常的做法是即使不需要获得任何数据,客户端也保持每隔一段固定的时间向服务器发送一次"保持连接"的请求,服务器在收到该请求后对客户端进行回复,表明知道客户端"在线"。

若服务器长时间无法收到客户端的请求,则认为客户端"下线",若客户端长时间无法收到服务器的回复,则认为网络已经断开。

socket

网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个 socket。

套接字(socket)是通信的基石,是支持 TCP/IP 协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议本地主机的 IP 地址本地进程的协议端口远地主机的 IP 地址远地进程的协议端口

应用层通过传输层进行数据通信时,TCP 会遇到同时为多个应用程序进程提供并发服务的问题。多个 TCP 连接或多个应用程序进程可能需要通过同一个 TCP 协议端口传输数据。

为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与 TCP/IP 协议交互提供了套接字(Socket)接口。应用层可以和传输层通过 Socket 接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。

建立socket连接

建立 Socket 连接至少需要一对套接字,其中一个运行于客户端,称为 ClientSocket ,另一个运行于服务器端,称为 ServerSocket 。

套接字之间的连接过程分为三个步骤:服务器监听客户端请求连接确认

服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。

客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

连接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户 端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

SOCKET 连接与 TCP 连接

创建 Socket 连接时,可以指定使用的传输层协议,Socket 可以支持不同的传输层协议(TCP 或 UDP(用户数据报协议,与 TCP 协议一样用于处理数据包,是一种无连接的协议)),当使用 TCP 协议进行连接时,该 Socket 连接就是一个 TCP 连接。

Socket 连接与 HTTP 连接

由于通常情况下 Socket 连接就是 TCP 连接,因此 Socket 连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。

但在实际网络应用中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导 致 Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。

而 HTTP 连接使用的是"请求-响应"的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。

很多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。

此时若双方建立的是 Socket 连接,服务器就可以直接将数据传送给 客户端,若双方建立的是 HTTP 连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请求,不仅可以保持在线,同时也是在"询问"服务器是否有新的数据,如果有就将数据传给客户端。

总结

http 是要基于 TCP 连接基础上的,简单的说,TCP 就是单纯建立连接,不涉及任何我们需要请求的实际数据,简单的传输。http 是用来收发数据,即实际应用上来的。

TCP 是底层通讯协议,定义的是 数据传输和连接方式的规范
HTTP 是应用层协议,定义的是 传输数据的内容的规范

HTTP 协议中的数据是利用 TCP 协议传输的,所以支持 HTTP 也就一定支持 TCPHTTP 支持的是 www 服务,而 TCP/IP 是协议,它是 Internet 国际互联网络的基础。

TCP/IP 是网络中使用的基本的通信协议。
TCP/IP 实际上是一组协议,它包括上百个各种功能的协议,如:远程登录、文件传输和电子邮件等,而 TCP 协议和 IP 协议是保证数据完整传输的两个基本的重要协议。通常说 TCP/IP 是 Internet 协议族,而不单单是 TCP 和 IP。

扩展:HTTP 响应码信息

http 状态返回代码 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码。

100 (继续) 请求者应当继续提出请求。服务器返回此代码表示已收到请求的第一部分,正在等待其余部分。

101 (切换协议) 请求者已要求服务器切换协议,服务器已确认并准备切换。

http状态返回代码 2xx (成功) 表示成功处理了请求的状态代码。

200 (成功) 服务器已成功处理了请求。 通常,这表示服务器提供了请求的网页。

201 (已创建) 请求成功并且服务器创建了新的资源。

202 (已接受) 服务器已接受请求,但尚未处理。

203 (非授权信息) 服务器已成功处理了请求,但返回的信息可能来自另一来源。

204 (无内容) 服务器成功处理了请求,但没有返回任何内容。

205 (重置内容) 服务器成功处理了请求,但没有返回任何内容。

206 (部分内容) 服务器成功处理了部分 GET 请求。

http状态返回代码 3xx (重定向) 表示要完成请求,需要进一步操作。 通常,这些状态代码用来重定向。

300 (多种选择) 针对请求,服务器可执行多种操作。 服务器可根据请求者 (user agent) 选择一项操作,或提供操作列表供请求者选择。

301 (永久移动) 请求的网页已永久移动到新位置。 服务器返回此响应(对 GET 或 HEAD 请求的响应)时,会自动将请求者转到新位置。

302 (临时移动) 服务器目前从不同位置的网页响应请求,但请求者应继续使用原有位置来进行以后的请求。

303 (查看其他位置) 请求者应当对不同的位置使用单独的 GET 请求来检索响应时,服务器返回此代码。

304 (未修改) 自从上次请求后,请求的网页未修改过。 服务器返回此响应时,不会返回网页内容。

305 (使用代理) 请求者只能使用代理访问请求的网页。 如果服务器返回此响应,还表示请求者应使用代理。

307 (临时重定向) 服务器目前从不同位置的网页响应请求,但请求者应继续使用原有位置来进行以后的请求。

http状态返回代码 4xx(请求错误) 这些状态代码表示请求可能出错,妨碍了服务器的处理。

400 (错误请求) 服务器不理解请求的语法。

401 (未授权) 请求要求身份验证。 对于需要登录的网页,服务器可能返回此响应。

403 (禁止) 服务器拒绝请求。

404 (未找到) 服务器找不到请求的网页。

405 (方法禁用) 禁用请求中指定的方法。

406 (不接受) 无法使用请求的内容特性响应请求的网页。

407 (需要代理授权) 此状态代码与 401(未授权)类似,但指定请求者应当授权使用代理。

408 (请求超时) 服务器等候请求时发生超时。

409 (冲突) 服务器在完成请求时发生冲突。 服务器必须在响应中包含有关冲突的信息。

410 (已删除) 如果请求的资源已永久删除,服务器就会返回此响应。

411 (需要有效长度) 服务器不接受不含有效内容长度标头字段的请求。

412 (未满足前提条件) 服务器未满足请求者在请求中设置的其中一个前提条件。

413 (请求实体过大) 服务器无法处理请求,因为请求实体过大,超出服务器的处理能力。

414 (请求的 URI 过长) 请求的 URI(通常为网址)过长,服务器无法处理。

415 (不支持的媒体类型) 请求的格式不受请求页面的支持。

416 (请求范围不符合要求) 如果页面无法提供请求的范围,则服务器会返回此状态代码。

417 (未满足期望值) 服务器未满足"期望"请求标头字段的要求。

http状态返回代码 5xx(服务器错误) 这些状态代码表示服务器在尝试处理请求时发生内部错误。 这些错误可能是服务器本身的错误,而不是请求出错。

500 (服务器内部错误) 服务器遇到错误,无法完成请求。

501 (尚未实施) 服务器不具备完成请求的功能。 例如,服务器无法识别请求方法时可能会返回此代码。

502 (错误网关) 服务器作为网关或代理,从上游服务器收到无效响应。

503 (服务不可用) 服务器目前无法使用(由于超载或停机维护)。 通常,这只是暂时状态。

504 (网关超时) 服务器作为网关或代理,但是没有及时从上游服务器收到请求。

505 (HTTP 版本不受支持) 服务器不支持请求中所用的 HTTP 协议版本。

扩展:HTTP 协议的特点

  1. 支持客户/服务器模式。

  2. 简单快速:客户向服务器请求服务时,只需要传送请求方法和路径,请求方法常用的有 GET,POST,HEAD 等,每种方法规定了客户与服务器联系的类型不同。由于 HTTP 协议简单,使得 HTTP 服务器的程序规模小,因而通讯速度很快。

  3. 灵活:HTTP 允许传输任意类型的数据对象。正在传输的类型由 Content-Type 加以标记。

  4. 无连接:无连接的含义是限制每次连接只处理一个请求,服务器处理完客户的请求并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。

  5. 无状态:HTTP 协议是无状态协议。无状态是指协议对于事物处理没有记忆能力,缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大,另一方面,在服务器不需要先前信息的时候它的应答就较快。

扩展:HTTP 2.0

HTTP 2.0 的出现,相比于 HTTP 1.x ,大幅度的提升了 web 性能。在与 HTTP/1.1 完全语义兼容的基础上,进一步减少了网络延迟。

多路复用 (Multiplexing)

多路复用允许同时通过单一的 HTTP/2 连接发起多重的请求-响应消息。

众所周知 ,在 HTTP/1.1 协议中 「浏览器客户端在同一时间,针对同一域名下的请求有一定数量限制。超过限制数目的请求会被阻塞」。

而 HTTP/2 的多路复用(Multiplexing) 则允许同时通过单一的 HTTP/2 连接发起多重的请求-响应消息。

因此 HTTP/2 可以很容易的去实现多流并行而不用依赖建立多个 TCP 连接,HTTP/2 把 HTTP 协议通信的基本单位缩小为一个一个的帧,这些帧对应着逻辑流中的消息。并行地在同一个 TCP 连接上双向交换消息。

更多可见: HTTP/2.0 相比 1.0 有哪些重大改进?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容