Hive系列之HSQL转换成MapReduce过程

hive的库、表等数据实际是hdfs系统中的目录和文件,让开发者可以通过sql语句, 像操作关系数据库一样操作文件内容, 比如执行查询,统计,插入等操作。一直很好奇hive是如何做到这些的。通过参考网上几篇不错的文档, 有点小心得分享出来。主要的参考链接
http://tech.meituan.com/hive-sql-to-mapreduce.html
http://www.slideshare.net/recruitcojp/internal-hive
注明:本文的图片借用slideshare内容。

hive的整体架构图如下所示, compiler部分负责把HiveSQL转换成MapReduce任务。

Paste_Image.png

基本转换步骤
hiveSQL转换成MapReduce的执行计划包括如下几个步骤:
HiveSQL ->AST(抽象语法树) -> QB(查询块) ->OperatorTree(操作树)->优化后的操作树->mapreduce任务树->优化后的mapreduce任务树

Paste_Image.png

SQL Parser:Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象 语法树AST Tree;
Semantic Analyzer:遍历AST Tree,抽象出查询的基本组成单元QueryBlock;
Logical plan:遍历QueryBlock,翻译为执行操作树OperatorTree;
Logical plan optimizer: 逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量;
Physical plan:遍历OperatorTree,翻译为MapReduce任务;
Logical plan optimizer:物理层优化器进行MapReduce任务的变换,生成最终的执行计划;

step1: SQL Parser
如下图所示, sql语句可以解析为三个部分
AST中第一个部分对应SQL语句中FROM access_log_hbase a JOIN product_hbase p ON (a.prono=p.prono)。
insert overwrite table对应第二部分。
select a.user, a.prono, p.maker, p.price对应第三部分。

Paste_Image.png

step2: Semantic Analyzer
这个步骤把AST转换成基本的查询块QB,如下图所示
QB的对象包括如下属性:
aliasToTabs:保存表格别名的信息
aliasToSubq:保存子查询的信息
qbm:保存每个输入表的元信息,比如表在HDFS上的路径,保存表数据的文件格式等

QBParseInfo对象包括如下属性:
joinExpr: 保存TOK_JOIN节点信息
destToxx:保存输出和各个操作的ASTNode节点的对应关系。

Paste_Image.png

如下图中, 表格别名a, p保存到aliasTotabs, 分别对应“access_log_hbase", " product_hbase"。
TOK_JOIN信息保存到ParseInfo对象:joinExpr

Paste_Image.png

下图所示,TOK_DESTINATION节点保存到nameToDest属性中。

Paste_Image.png

下图所示,TOK_SELECT节点保存到nameToDest属性中。

Paste_Image.png

step3:Logical Plan
该步骤是把查询块QB转换操作树。
操作树基本的操作符包括TableScanOperator,SelectOperator,FilterOperator,JoinOperator,GroupByOperator,ReduceSinkOperator。
TableScanOperator: 扫描数据表中数据,从原表中取数据。
JoinOperator完成Join操作。
FilterOperator完成过滤操作, 对应sql里面的where语句功能
ReduceSinkOperator:标志着Hive Map阶段的结束, Reduce阶段的开始。
SelectOperator:reduce阶段输出select中的列
FileSinkOperator: 生成结果数据到输出文件。

从两个输入表格中读入数据, 用operator树表示为两个TableScanOperator节点

Paste_Image.png

Join放在reduce阶段执行, 执行join节点前,加入两个ReduceSinkOperator节点,表示当前map阶段结束, 进入到reduce阶段。

Paste_Image.png

selectoperator节点,从reduce节点获取select指定的列值。

Paste_Image.png

nameToDest ASTNode节点,转换为FileSinkOperator节点, 把结果写入到目标文件。

Paste_Image.png

通过上面几个转换步骤, 最终生成的logical计划树。

Paste_Image.png

logical plan tree还可以通过logical plan optimizer进一步优化, 优化完成的逻辑优化树还有转换成物理执行计划和物理执行计划优化。本文不做详细介绍, 后续有时间再补充。

PS: 查看hive sql编译后的执行计划
hive> explain select * from tablename;

参考文档:
http://tech.meituan.com/hive-sql-to-mapreduce.html
http://www.slideshare.net/recruitcojp/internal-hive
http://lxw1234.com/archives/2015/09/476.htm

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容