为什么数学如此难学?

数学是难的。有三个方面的原因。

第一:学习数学的中枢是人大脑的痛苦中枢。也就是说,感受针刺这样的疼痛与处理数字是同大脑的同一片区域。有人学数学就头痛。这导致了人对数学天生的逃避反应,越逃避,自然越难学。我见过业余练习书法的,学习跳舞的,学写诗的,却很少见到业余时间学习数学的。

第二:数学的领域很广泛。一般的人不知道从哪里开始入手。

第三:数学的符号混乱。这是本文主要要说的。因为数学体系内部的混乱,导致的难学。要学数学,必须理清楚各种混乱的符号是什么意思。如果没有接触过数学的人,看到那些符号,会惊叹:这是怎样的黑话呢?

混乱的数学符号之一:乘号与乘法

你问我,数学中一共有多少种乘法,我一定说不清楚。好像有数字的乘法,点乘,叉乘等等,大约还有卷积之类。只能佩服最早的数学家,是如此的偷懒。连一个新的运算符号都懒得去发明。把可怜的乘号不断的重载。

如果你还记得,小学的时候,学数学,乘号是用一个叉,类似 这样 3 ✗ 4 = 12 。当时有的老师要求很严格,不能随意交换被乘数和乘数。例如,上面的式子是计算“单价3元,4个东西的总价格”。如果“单价4元,3个东西”,一定要写成 4 ✗ 3 =12 。现在的老师不再这样严格的要求了。

到了初中,老师忽然让省略数字和字母之间的乘号,或者在两者之间打一个点,类似 3a 或者 3 ⋅ a 这样。到了高中,有一天,物理老师隆重推荐点乘和叉乘。从此,乘法的世界开始混乱了。他口中的向量、标量唬退了一大波的数学爱好者。

到了大学,接触了矩阵的乘法,毕业后,接触了四元数,才知道,有时候,乘法真的不能交换被乘数和乘数啊!于是,感谢起一年级的数学老师来,她太有先见之明了。

乘法记号的产生,本来是为了把加法写的紧凑。那是乘法最初的含义。随着历史的发展,乘号被不断的重载。

从最初的意义上讲,乘法中,乘数应该必然是整数,因为乘数是用来计数相同的加数个数的。为了简洁的书写加法,乘法才诞生的。

后来,有了除法。再后来,乘数就可以是分数了。

再后来,相同的数连乘,被紧凑的写成乘方。

后来,有了开方,以及开不尽的情况。无理数作为有理数的极限,诞生了。

于是,乘数顺理成章,可以是无理数。数的概念在扩张,乘法就随着扩张。乘号,就一直被重载。不但可以用来乘正数,还可以用来乘负数。负数乘负数的结果是一个正数,这个在当时是直觉下的硬性规定。没有人能解释清楚为什么。

上面一切的重载都很自然,基本没有什么不协调的地方。

当数变成复数以后,混乱发生了。而且发生在一瞬间。同时出现了三种乘法:复数可以和复数相乘,复数表示的向量可以进行点乘,向量还可以进行叉乘。如果不是如我这样的学霸,必然瞬间晕倒。

到底发生了什么?有时候打一个点,有时候画一个叉,有时候什么都不写,居然有三种不同的含义?表示向量的时候,在字母头上加一个箭头;表示共轭的时候,在头上加一条横线;绝对值符号表示复数的模我没有意见,可头上加横线,从前不是表示平均的吗?x拔怎么就变成了z的共轭。否定命题也是头上加横线。补集也是头上加横线。头上加横线怎么就这么受欢迎呢?

不用说,“共轭”两个字,又吓跑了一堆人。

乘号的混乱,究其原因,是数学家们固执于中缀表达式导致的结果。自从有了函数,大家完全都可以说人话了。假如这样写,如 lisp的 S 表达式一样:

(mul a b)
(cross a b)
(dot a b)

岂不是很好分别?

所有的符号写在前面,换成一个通俗易懂的函数名。
加法可以写成
(add a b)
甚至换成中文
(加 甲 乙)都是好懂的。

如果说,单纯用英文就够了,那么,为什么一定要用希腊字母呢?
一定要用的话
(Π a b)也可以表示乘法了。
(∑ a b)也可以表示加法了。

一方面,数学越来越抽象;一方面,书写越来越紧凑。数学符号都是数学家拍脑门临时想出来的,除了莱布尼兹会慎重考虑。你一定见过 ∑ 符号头上和脚底都写满东西的时候,这就是所谓的紧凑了。紧凑的好处是,对熟悉的人来说,一眼就看出来整个式子是某种模式在重复;紧凑的缺点就是,从来没有学习过的人,看它就想是一团乱码。

抽象和紧凑的结果就是,学习数学的过程中:

如果你碰到一个古怪的符号,那么,它必定会有及其深远的含义,例如拓扑学上奇怪的花体字母,你必须搞懂与其相关的每一层的含义,才知道这个字母的含义;

如果你碰到一个看似普通的符号,它可能会有与过去不同的含义,例如刚才说的点乘;

对一个符号,必须联系上下文才能知道意义,例如 这个符号:^,有时候用来表示一种特殊的乘法,有时是转置一个矩阵,有时表示指数函数的运算,有时表示按位异或,有时候表示"并且",有时表示 Ctrl 键,说它是 兰布达λ 又太小,说它是帽子,又常常不写在头顶。该怎么读要看当时的情况。大约数学符号太多,键盘又太小,于是,不知道怎么写的情况下,都用这个超级小的 ^ 代替。

数学本来就很难,诸如此类容易引起误会的地方还特别多。某些时候,一个字母的四个角落都被写上了数字,然后各有不同的含义,比字典的四角号码还难用。

写在两个字母之间的圆点,打高一些和打低一些,含义是不相同的。

字母的头顶上可以加一个尖尖的帽子,或者弧形的帽子,或者一个圆点,或者两个圆点,或者一个小圆圈;字母的右上角可以加任何你能见到的东西,一个两个或者三个小撇,一个带括号的数字,不带括号的数字,甚至类似一篇文章那么长的公式。绝对值的符号可以打到N层。

总结:数学难学的原因是行(黑)话太多。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • 第一章数和数的运算 一概念 (一)整数 1整数的意义 自然数和0都是整数。 2自然数 我们在数物体的时候,用来表示...
    meychang阅读 2,586评论 0 5
  • 新一轮的课程改革,树立起“以学生发展为本”的大旗,更加关注学生的独立性、主动性、首创性。倡导旨在克服单纯接受学习弊...
    悦读生活阅读 2,619评论 0 16
  • 文章摘要: 数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的.数...
    椰子数学阅读 13,897评论 0 25
  • 2017.4.20 今天把活着这一本书都看完了,如此沉重的故事,我所感到的就是活着的意志,是福贵身上唯一不能被剥夺...
    Fhwak阅读 161评论 0 0
  • 手机号码归属地接口:根据手机号码或手机号码的前7位,查询手机号码归属地信息,包括省份 、城市、区号、邮编、运营商和...
    yaojq阅读 7,493评论 0 7