Chapter 9

Chapter 9: On-policy Prediction with Approximation

From this chapter, we move from tabular methods to approximate methods to tackle the curse of dimension in the state space. Instead of storing a lookup table for state values in tabular methods, approximate methods learn state values with function approximation, i.e., \hat{v}(s, w) \approx v_\pi(s).
However, approximate methods are not simple combination of RL and supervised learning. Compared to tabular RL methods, approximate methods introduce the challenge of generalization, i.e., the change of w based on one state will also change the value of all other states, while the values of different states are decoupled in tabular case. In other words, with function approximation, we have lost the policy improvement theorem under the tabular case. Compared to standard supervised learning on a static distribution, function approximation in RL raises new issues such as nonstationarity (the training samples are collected online from a time-variant policy), bootstrapping (the learning target itself is dependent on the parameters), and delayed targets.
This chapter starts from the simplest case, i.e., on-policy prediction (value estimation) with approximation given a fixed policy.

The Prediction Objective

The prediction problem can be seen as a supervised learning problem, where the data distribution is the on-policy distribution \mu(s) generated by the policy \pi. The on-policy distribution is the normalized fraction of time spent in s.
Under the on-policy distribution, the learning objective is defined as \overline{VE}(w) = \sum_{s \in \mathcal{S}} \mu(s) \big[ v_\pi(s) - \hat{v}(s, w) \big]^2. However, we need to note that

Remember that our ultimate purpose--the reason we are learning a value function--is to find a better policy. The best value function for this purpose is not necessarily the best for minimizing \overline{VE}. Nevertheless, it is not yet clear what a more useful alternative goal for value prediction might be.

Stochastic-gradient and Semi-gradient Methods

If we know the true state values, then we can learn w with standard SGD as follows: w_{t+1} = w_t - \frac{1}{2} \alpha \nabla \big[ v_\pi(S_t) - \hat{v}(S_t, w_t) \big]^2 = w_t + \alpha \big[ v_\pi(S_t) - \hat{v}(S_t, w_t) \big] \nabla \hat{v}(S_t, w_t). However, the challenge in RL is that we don't have a ground-true v_\pi(S_t) as in supervised learning. Instead, we need to use a backup estimation U_t as the target.
If U_t is an unbiased estimate, like in MC (U_t = G_t), then w_t is guaranteed to converge to a local minimum under the usual stochastic approximation conditions for decreasing \alpha.
However, for TD, our alternative target R + \gamma \hat{v}(S', w) is not independent of w_t. Consequently, we can not apply standard SGD, but use semi-gradient methods for update, i.e., only take into account the gradient of w w.r.t. the current estimate, while ignore its gradient w.r.t. the target part. Altough semi-gradient methods converge less robustly, they do converge reliably in the linear case, and more importantly, they typically enable significantly faster and fully continual and online learning.

Linear Methods and Least-Squares TD

When the approximation function is linear, we can write the semi-gradient update explicitly as:
\begin{aligned} w_{t+1} &= w_t + \alpha (R_{t+1} + \gamma w_t^T x_{t+1} - w_t^T x_t) x_t \\ &= w_t + \alpha \big[ R_{t+1} x_t - x_t(x_t - \gamma x_{t+1})^T w_t \big] \end{aligned} In expectation, we have \mathbb{E}[w_{t+1}|w_t] = w_t + \alpha (b - Aw_t), where b = \mathbb{E} [R_{t+1} x_t], and A = \mathbb{E}[x_t (x_t - \gamma x_{t+1})^T]. Thus the converged solution, i.e., the TD fixed point, satisfies w_{\text{TD}} = A^{-1}b. Consequently, instead of using iterative algorithm like SGD, we can directly compute the closed-form solution for linear methods. This is known as the least-squared TD algorithm, and its complexity is O(d^2), where d is the state space dimension. Matrix inverse typically requires a complexity of O(d^3). However, the matrix \hat{A} is the sum of vector outer product, thus its inverse can be computed more efficiently using the Sherman-Morrison formula.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容