概率计算算法

1.1 直接计算法

由于已知马尔可夫模型参数和观察序列,所以有

  1. 模型产生某一状态序列的概率


  2. 模型产生某一状态序列时得到某一观测序列的概率


  3. 上面两概率可求得,在该模型下,产生状态序列I同时产生观测序列O的概率:


  4. 目标求解概率,该模型下,产生观测序列O的概率:
    即所有可能产生观测序列O的状态序列I,产生O的概率之和。


所以,利用最后一条公式就可求出概率,但是此时运算次数为 (T+T+2)*NT,时间复杂度为O(TNT)

1.2 前向算法

把隐马模型想象成一个T×N个顶点的图,其意义为T个时刻,每个时刻都有N种可能的状态。每个点为T个时刻,N中状态集合中的一种,每条边为从 i 时刻某个状态到 i+1 时刻另外一个状态的转移。

每个点存储前向概率,每条边记录 aiTjT*bjk。即 T 时刻是状态 i ,且从状态 i 转移到状态 j 的概率以及状态 j 产生观测 k 的概率。

前向概率定义:在此模型下,输入如此观测序列且当前状态为 qi 的概率

算法:

  1. 初始化:第一个时刻,状态 i 的初始前置


  2. 递推:从 t 时刻的所有顶点,求出 t + 1时刻所有顶点的前向概率,从而求出所有点的前向概率。

  1. 终止:最终T时刻所有可能性加起来就是观测序列O出现的概率


1.3 后向算法

后向概率:此刻状态为qi,后面序列出现的概率是多大。

  1. 初始化:
  1. 递推
  1. 计算


1.4 利用前后向概率计算一些细节

  1. 给定模型和观测序列,t时刻处于状态 qi 的概率
  1. 给定模型和观测序列O,在时刻 t 处于状态 qi 且在 t+1 处于状态 qj 概率
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容