因为公司的安排,慢慢有点转向后台的工作了,所以最近一直懒得写Android的文章。但是秉着老本不能忘的原则,我今天为大家带来Handler的源码剖析,往后的日子,源码剖析的文章可能慢慢会多起来,希望大家喜欢。
初识Handler
什么是Handler?从《Android开发艺术探索》里面,我总结了这么一段话:Android的消息机制主要是指Handler的运行机制,Handler的运行需要底层MessageQueue和Looper的支撑。而在Android里,很多人认为Handler的作用是更新UI,其实那只是他的一个特殊使用场景,具体来说:有时候需要在子线程中进行耗时的I/O操作,可能是读取文件或者访问网络等。
Handler的基本用法
Handler handler = new Handler(new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
switch (msg.what){
case 1:
break;
}
return true;
}
});
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
Message message = Message.obtain(handler,1);
handler.sendMessageDelayed(message, 1000);
}
});
thread.start();
}
Handler源码剖析
好了,看完了Handler的定义和基本用法之后,我们现在来看看我们的今天的重头戏,我们要把Handler庖丁解牛一下。
定义讲得很清楚,Handler的机制涉及了另外三个重要的组件Looper、MessageQueue以及Message。下面我们从Handler的构造方式开始解析:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//(1)
mLooper = Looper.myLooper();
//(2)
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
我们看到虽然构造方法有很多个,但是实际上有用的就只有一个,下面我们来分析下:
(1)很快,我们就在构造方法里面看到一个熟悉的身影,那就是Looper,我们点下去看下Looper.myLooper()做了什么;
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
其实就是利用sThreadLocal获取到当前的线程Looper;
(2)我们可以注意到,当获取的Looper是null的时候,程序就会报错:Can't create handler inside thread that has not called Looper.prepare(),意思很简单,就是说Handler的创建必须在Looper.prepare()之后执行才能创建。那接下来我们去看看Looper.prepare()方法究竟是何方神圣:
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
代码很简单,在(1)中我们看到了sThreadLocal.get()的方法获取Looper,而Looper.prepare()里面是sThreadLocal.set(new Looper(quitAllowed));
顾名思义就是新建一个Looper,并且把它set进去相应的sThreadLocal中。
从(2)中,我们很容易就得出结论来:新建一个Handler必须在前先新建一个Looper,且一个线程想要使用Handler,就必须得创建一个Looper对象。
得出这个结论之后,有人会问,那主线程呢?主线程明明看上去没有looper,为什么就能创建Handler呢?
答案在下面:
public static void main(String[] args) {
......
Looper.prepareMainLooper();
......
Looper.loop();
......
}
我们可以看到,在主线程的一个入口ActivityThread中的void main(String[] args),早已经帮我们创建了一个looper,所以主线程里面可以随便的新建Handler进行使用。
好了,看完Handler的构造方法,我们就看下Handler的消息是怎么被发出的:
//(1)
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
//(2)
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
//(3)
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
//(4)
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
//(5)
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
//(6)
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
我们可以看到(1)-(5)的发送消息方法都是指向方法(6),而方法(6)最关键是enqueueMessage()这个方法,我们接下来看看他究竟是何方神圣:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
boolean enqueueMessage(Message msg, long when) {
...
synchronized (this) {
...
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
//(1)
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
(1)我们终于看到除了looper以外的第二个boss-MessageQueue,消息队列。我们可以看到在这个消息队列关键代码里面,有一个for的死循环,而消息队列的作用恰恰是两个:插入和读取,而for循环中的next方法就是从队列中取出一条Message消息并将其从消息队列中移除。另外,从代码上看,消息队列并不是一个队列,而是一个单链表。
有人会问,消息出来之后去了哪里呢,答案很明显:Looper
下面我们看看Looper具体做了什么:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
//(1)
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
...
msg.recycleUnchecked();
}
}
(1)我们看到又是一个for的死循环,而这个死循环的作用刚好是从消息队列中queue.next()取出一条条Message,然后将message调用msg.target.dispatchMessage(msg)方法发出去,这里的msg。target是发送这条消息的Handler对象,这样最终又交给Handler的dispatchMessage方法来处理了:
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
有人会问既然looper是死循环,那么我们可以停掉它吗,答案是肯定的。官方提供了两个方法:
public void quit() {
mQueue.quit(false);
}
public void quitSafely() {
mQueue.quit(true);
}
一个是强制退出,另一个是安全退出,如果该looper退出后,相应的应用也会被杀死。
好了,大概流程就说完了,下面给个图,方便大家去更好的了解:
好了,这期的源码剖析就到这里了,如果有什么地方说错的,可以向我指正,大家共同进步!