Ubuntu18.04安装tensorflow-gpu(不使用Docker)

Ubuntu18.04安装tensorflow-gpu(不使用Docker)

版本设置

tensorflow-gpu:1.14.0、nvidia-driver-418、cuda-10.0

注意:版本搭配,否则会导致各种问题。参考tensorflow官网的版本搭配

首先安装nvidia-driver-418

查看当前显卡驱动信息

lshw -C display | configuration

将nvidia-driver-418 repository添加到apt

#下载cuda deb文件
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/cuda-10-0_10.0.130-1_amd64.deb
#根据deb文件构建软件包
sudo dpkg -i cuda-10-0_10.0.130-1_amd64.deb
#获取公钥
sudo apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub

sudo apt update

wget https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb

sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb

sudo apt update

开始安装驱动

#查看上一步在apt中内建的nvidia driver,注意版本是否为我们需要安装的版本号
ubuntu-drivers devices
#输出为
== /sys/devices/pci0000:00/0000:00:02.0/0000:03:00.0 ==
modalias : pci:v000010DEd00001B84sv00007377sd00000000bc03sc00i00
vendor   : NVIDIA Corporation
model    : GP104 [GeForce GTX 1060 3GB]
driver   : nvidia-driver-410 - third-party free
driver   : nvidia-driver-418 - third-party free recommended
driver   : nvidia-driver-390 - distro non-free
driver   : xserver-xorg-video-nouveau - distro free builtin

#开始安装
sudo ubuntu-drivers autoinstall
#安装完成后重启
sudo reboot
#查看驱动信息
nvidia-smi
#输出信息为
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67       Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 106...  On   | 00000000:03:00.0  On |                  N/A |
| 36%   37C    P8     7W / 120W |    434MiB /  3016MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1072      G   /usr/lib/xorg/Xorg                            16MiB |
|    0      1138      G   /usr/bin/gnome-shell                          49MiB |
|    0      1429      G   /usr/lib/xorg/Xorg                           122MiB |
|    0      1561      G   /usr/bin/gnome-shell                         155MiB |
|    0      2536      C   python3                                       59MiB |
|    0      3421      G   ...quest-channel-token=1415105501360332168    25MiB |
+-----------------------------------------------------------------------------+

驱动安装后安装cuda-10.0

下载cuda runfile文件

从官网https://developer.nvidia.com/cuda-10.0-download-archive下载runfile 文件,如图

2019-07-23 14-38-52屏幕截图.png

安装cuda

下载完成后,运行文件

sudo sh cuda_10.0.130.410.48_linux.run

根据提示进行安装,跳过驱动安装部分。

安装成功后会生成/usr/local/cuda-10.0文件夹

添加环境变量

sudo vim /etc/profile
#添加下面两条语句到文件中
export PATH=/usr/local/cuda-10.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
#重启生效
sudo reboot
#查看cuda 版本
nvcc --version
#输出结果为
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
#至此cuda10.0安装成功

安装cudnn

从官网上下载最新版本的cudnn:https://developer.nvidia.com/rdp/cudnn-archive

注意版本搭配

下载后,进行压缩包放置的文件夹

tar xvzf  cudnn-10.1-linux-x64-v7.6.1.34.tgz
sudo cp /cuda/include/* /usr/local/cuda-10.0/include/
sudo cp /cuda/lib64/* /usr/local/cuda-10.0/lib64/
sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*

安装tensorflow

#安装最稳定版本的tensorflow-gpu,版本号为1.14.0
pip3 install tensorflow-gpu

测试tensorflow

运行任意一个使用到tensoflow的文件,输出结果正确则测试通过。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。