Android图片缓存策略(一)-图片加载方式

1 图片加载方式

BitmapFactory类提供了四类方法:decodeFile、decodeResource、decodeStream和decodeByteArray,分别用于支持从文件系统、资源、输入流以及字节数组中加载出一个Bitmap对象
其中decodeFiledecodeResource又间接调用了decodeStream方法,这四类方法最终是在Android的底层实现的,对应着BitmapFactory类的几个native方法

2 如何高效加载BitMap

如何高效地加载Bitmap呢?其实核心思想也很简单,那就是采用BitmapFactory. Options来加载所需尺寸的图片。

这里假设通过ImageView来显示图片,很多时候ImageView并没有图片的原始尺寸那么大,这个时候把整个图片加载进来后再设给ImageView,这显然是没必要的,因为ImageView并没有办法显示原始的图片。通过BitmapFactory.Options就可以按一定的采样率来加载缩小后的图片,将缩小后的图片在ImageView中显示,这样就会降低内存占用从而在一定程度上避免OOM,提高了Bitmap加载时的性能

通过BitmapFactory.Options来缩放图片,主要是用到了它的inSampleSize参数,即采样率。

2.1 采样率说明:

设置inSanmpleSize2,则图片的宽高都会变成原来的1/2,则像素数为原图的1/4,其占的内存也为原图的1/4

inSampleSize必须是大于1的整数图片才会有缩小的效果,并且采样率同时作用于宽/高,这将导致缩放后的图片大小以采样率的2次方形式递减,即缩放比例为1/(inSampleSize的2次方),比如inSampleSize为4,那么缩放比例就是1/16。有一种特殊情况,那就是当inSampleSize小于1时,其作用相当于1,即无缩放效果

2.2 采样率获取

通过采样率即可有效地加载图片,那么到底如何获取采样率呢?获取采样率也很简单,遵循如下流程:
(1)将BitmapFactory.Options的inJustDecodeBounds参数设为true并加载图片。
(2)从BitmapFactory.Options中取出图片的原始宽高信息,它们对应于outWidthoutHeight参数。
(3)根据采样率的规则并结合目标View的所需大小计算出采样率inSampleSize
(4)将BitmapFactory.OptionsinJustDecodeBounds参数设为false,然后重新加载图片

这里说明一下inJustDecodeBounds参数,当此参数设为true时,BitmapFactory只会解析图片的原始宽/高信息,并不会去真正地加载图片,所以这个操作是轻量级的

这个时候BitmapFactory获取的图片宽/高信息和图片的位置以及程序运行的设备有关,比如同一张图片放在不同的drawable目录下或者程序运行在不同屏幕密度的设备上,这都可能导致BitmapFactory获取到不同的结果,之所以会出现这个现象,这和Android的资源加载机制有关。后面会单独再写一篇关于Android图片资源加载机制的文章

2.3 采样率计算方式

  public static int calculateInSampleSize(BitmapFactory.Options options, int reqWidth, int reqHeight) {
        // Raw height and width of image           
        final int height = options.outHeight;
        final int width = options.outWidth;
        int inSampleSize = 1;
        if (height > reqHeight || width > reqWidth) {
            final int halfHeight = height / 2;
            final int halfWidth = width / 2;
            // Calculate the largest inSampleSize value that is a power of 2 and  keeps both         
            // height and width larger than the requested height and width.                
            while ((halfHeight / inSampleSize) >= reqHeight&& (halfWidth / inSampleSize) >= reqWidth){
                inSampleSize *= 2;
            }
        }
        return inSampleSize;
    }

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355