浅析“高斯白噪声”,“泊松噪声”,“椒盐噪声”的区别

在图像处理的过程中,一般情况下都进行图像增强,图像增强主要包括“空域增强”和“频域增强”, 空域增强包括平滑滤波和锐化滤波。

平滑滤波,就是将图像模糊处理,减少噪声。那么在滤波之前,首先需要了解一下噪声的种类,行成原因以及各种的特点。

噪声可能来自于开始的图像采集,量化或者后续的图像编码压缩传送过程,根据具体的离散性和随机性主要讲噪声分成三类:'gaussian'、'poisson'、'salt&pepper'。下面我将具体分析三者的差异

一、高斯白噪声(gaussian)

高斯白噪声,在百度的定义为幅度分布服从高斯分布,概率谱分布服从均匀分布。白光是所有颜色光的集合,而白噪声也可以理解成在频谱上分布丰富,且在功率谱上趋近于常值。频域有限,时域无限,那么也就是说,它在任何时刻出现的噪声幅值都是随机的。高斯分布也称正态分布,有均值和方差两个参数,均值反应了对称轴的方位,方差表示了正态分布曲线的胖瘦。高斯分布是最普通的噪声分布。

在MATLAB中 有用于创建噪声的函数,调用格式为J=imnoise(I,type),例子如下:

clear all

>> i=imread('god.jpeg');

>> j=imnoise(i,'gaussian');

>> j1=imnoise(i,'gaussian',0,0.05);

>> j2=imnoise(i,'gaussian',0,0.2);

>> figure

>> subplot(2,2,1),imshow(i);

>> xlabel('原图像');

>> subplot(2,2,2),imshow(j1);

>> xlabel('高斯白噪声,方差=0.05');

>> subplot(2,2,3),imshow(j);

>> xlabel('高斯白噪声,默认方差');

>> subplot(2,2,4),imshow(j2);

>> xlabel('高斯白噪声,方差=0.2');

上段代码即对图像进行了 不同方差参数的 高斯加噪,

从图像中可以看出,方差参数越大,图像越模糊。

二、泊松噪声

何为泊松噪声,就是符合泊松分布的噪声模型,泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等

了解了泊松分布数学模型,那什么是泊松噪声、以及为什么会图像会出现泊松噪声呢?由于光具有量子特效,到达光电检测器表面的量子数目存在统计涨落,因此,图像监测具有颗粒性,这种颗粒性造成了图像对比度的变小以及对图像细节信息的遮盖,我们对这种因为光量子而造成的测量不确定性成为图像的泊松噪声。

泊松噪声一般在亮度很小或者高倍电子放大线路中出现。具体调用格式如下:

clear all

>> i=imread('god.jpeg');

>> j=imnoise(i,'poisson');

>> figure

>> subplot(1,2,1),imshow(i);

>> xlabel('原图');

>> subplot(1,2,2),imshow(j);

>> xlabel('poisson加噪');


三、椒盐噪声

何为椒盐噪声,椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。具体调用格式如下:

>> clear all

>> i=imread('god.jpeg');

>> i=imread('god.jpeg');

>> j=imnoise(i,'salt & pepper',0.05);

>> j1=imnoise(i,'salt & pepper',0.2);

>> j2=imnoise(i,'salt & pepper',0.5);

>> figure

>> subplot(2,2,1),imshow(i);

>> xlabel('原图');

>> subplot(2,2,2),imshow(j);

>> xlabel('d=0.05');

>> subplot(2,2,3),imshow(j1);

>> xlabel('d=0.2');

>> subplot(2,2,4),imshow(j2);

>> xlabel('d=0.5');


从上图可以看出,噪声密度d越大,对图像的影响也就越大,一般l大约影响d*numel(I)个像素。

四、总结

下面对一副图像分别添加gaussian、poisson、salt&pepper噪声。

>> clear all

>> i=imread('god.jpeg');

>> j=imnoise(i,'gaussian',0,0.025);

>> j1=imnoise(i,'salt & pepper',0.025);

>> j2=imnoise(i,'poisson');

>> figure

>> subplot(2,2,1),imshow(i);

>> xlabel('原图');

>> subplot(2,2,2),imshow(j);

>> xlabel('gaussian');

>> subplot(2,2,3),imshow(j1);

>> xlabel('salt & pepper');

>> subplot(2,2,4),imshow(j2);

>> xlabel('poisson');

由此可见,椒盐噪声的强度最大,但是噪声分布最稀松。继续对比ga

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,815评论 0 29
  • title: Week 4: Image restorationdate: 2016-02-02 20:26:14...
    涉风阅读 1,045评论 0 0
  • 卡尔曼滤波在我当学生的时候就用过,但是当年我似乎就是套公式,没有理解其精髓,加之时间久了有点模糊,突然需要指导学生...
    Roger_罗杰阅读 83,395评论 41 159
  • 简单阈值 这里,问题很简单,如果像素值超过阈值,就给分配一个值(可能是白色),否则给分配另一个值(可能是黑色)。用...
    xxxss阅读 4,588评论 1 52
  • 对上述图像进行增强、主要增强两方面,一方面是图像的亮度,另一方面就是图像的对比度。 第一种方法:将RGB格式的图像...
    amazingu阅读 3,963评论 0 0