前言
上一篇文章介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢?这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去。
准备工作
我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 FLink 和 Kafka 。
运行启动 Flink、Zookepeer、Kafka,(详细见自定义data source篇)
好了,都启动了!
数据库建表
DROP TABLE IF EXISTS `Student`;
CREATE TABLE `Student` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`age` int(10) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
实体类
Student.java
package com.baiyu.flink.model;
import lombok.*;
/**
* Desc:
*/
@Setter
@Getter
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Student {
public int id;
public String name;
public String password;
public int age;
}
工具类
工具类往 kafka topic student 发送数据
package com.baiyu.flink.utils;
import com.alibaba.fastjson.JSON;
import com.baiyu.flink.model.Metric;
import com.baiyu.flink.model.Student;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
/**
* 往kafka中写数据
* 可以使用这个main函数进行测试一下
* auth: baiyu
*/
public class KafkaUtils2 {
public static final String broker_list = "localhost:9092";
public static final String topic = "student"; //kafka topic 需要和 flink 程序用同一个 topic
public static void writeToKafka() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", broker_list);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer producer = new KafkaProducer<String, String>(props);
for (int i = 1; i <= 200; i++) {
Student student = new Student(i, "baiyu" + i, "password" + i, 18 + i);
ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(student));
producer.send(record);
System.out.println("发送数据: " + JSON.toJSONString(student));
}
producer.flush();
}
public static void main(String[] args) throws InterruptedException {
writeToKafka();
}
}
SinkToMySQL
该类就是 Sink Function,继承了 RichSinkFunction ,然后重写了里面的方法。在 invoke 方法中将数据插入到 MySQL 中。
package com.baiyu.flink.sink;
import com.baiyu.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
/**
* Desc:
* auth: baiyu
*/
public class SinkToMySQL extends RichSinkFunction<Student> {
PreparedStatement ps;
private Connection connection;
/**
* open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接
*
* @param parameters
* @throws Exception
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = getConnection();
String sql = "insert into Student(id, name, password, age) values(?, ?, ?, ?);";
ps = this.connection.prepareStatement(sql);
}
@Override
public void close() throws Exception {
super.close();
//关闭连接和释放资源
if (connection != null) {
connection.close();
}
if (ps != null) {
ps.close();
}
}
/**
* 每条数据的插入都要调用一次 invoke() 方法
*
* @param value
* @param context
* @throws Exception
*/
@Override
public void invoke(Student value, Context context) throws Exception {
//组装数据,执行插入操作
ps.setInt(1, value.getId());
ps.setString(2, value.getName());
ps.setString(3, value.getPassword());
ps.setInt(4, value.getAge());
ps.executeUpdate();
System.out.println("sink to mysql");
}
private static Connection getConnection() {
Connection con = null;
try {
con = DriverManager.getConnection("jdbc:mysql://localhost:3306/baiyu?useUnicode=true&characterEncoding=UTF-8", "user", "mysql");
} catch (Exception e) {
System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
}
return con;
}
}
Flink 程序
这里的 source 是从 kafka 读取数据的,然后 Flink 从 Kafka 读取到数据(JSON)后用阿里 fastjson 来解析成 student 对象,然后在 addSink 中使用我们创建的 SinkToMySQL,这样就可以把数据存储到 MySQL 了。
package com.baiyu.flink;
import com.alibaba.fastjson.JSON;
import com.baiyu.flink.model.Student;
import com.baiyu.flink.sink.SinkToMySQL;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import java.util.Properties;
/**
* Desc:
* auth: baiyu
*/
public class SinkToMysql {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "metric-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "latest");
SingleOutputStreamOperator<Student> student = env.addSource(new FlinkKafkaConsumer011<>(
"student", //这个 kafka topic 需要和上面的工具类的 topic 一致
new SimpleStringSchema(),
props)).setParallelism(1)
.map(string -> JSON.parseObject(string, Student.class)); //Fastjson 解析字符串成 student 对象
student.addSink(new SinkToMySQL()); //数据 sink 到 mysql
env.execute("Flink add sink");
}
}
结果
运行 Flink 程序,然后再运行 KafkaUtils2.java 工具类,这样就可以了。
如果数据插入成功了,那么我们查看下我们的数据库:
数据库中已经插入了 100 条我们从 Kafka 发送的数据了。证明我们的 SinkToMySQL 起作用了。是不是很简单?
项目结构
写在最后
本文主要利用一个 demo,告诉大家如何自定义 Sink Function,将从 Kafka 的数据 Sink 到 MySQL 中,如果你项目中有其他的数据来源,你也可以换成对应的 Source,也有可能你的 Sink 是到其他的地方或者其他不同的方式,那么依旧是这个套路:继承 RichSinkFunction 抽象类,重写 invoke 方法。