精准率 召回率 F1

对于二类分类问题常用的评价指标是精准度(precision)与召回率(recall)。通常以关注的类为正类,其他类为负类,分类器在测试数据集上的预测或正确或不正确,4种情况出现的总数分别记作:

    TP——将正类预测为正类数

    FN——将正类预测为负类数

    FP——将负类预测为正类数

    TN——将负类预测为负类数

由此:

正确率Accuracy = (TP+TN) / (TP + FP+ FN+TN)

精准率precision定义为:P = TP / (TP + FP)

召回率recall定义为:R = TP / (TP + FN)

F1值定义为: F1 = 2 P R / (P + R)

精准率和召回率和F1取值都在0和1之间,精准率和召回率高,F1值也会高,不存在数值越接近0越高的说法,应该是数值越接近1越高。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容