10-monkeys-species(利用resNet50模型微调finetune)

from keras import Sequential
from keras import layers
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import keras

height = 224
width = 224
channels = 3
num_classes = 10

resNet50_fineTuneModel = Sequential()
resNet50_fineTuneModel.add(keras.applications.ResNet50(
    include_top=False,  
    pooling="avg",
    weights='imagenet'
))
resNet50_fineTuneModel.add(keras.layers.Dense(num_classes,activation="softmax"))
 #######设置该resNet层不可训练
resNet50_fineTuneModel.layers[0].trainable = False   

resNet50_fineTuneModel.compile(
    optimizer="sgd",
    loss="categorical_crossentropy",
    metrics=["acc"]
)

#######################图像数据增强
train_datagen = ImageDataGenerator(
    ##########模型微调,已经归一化了
    preprocessing_function=keras.applications.resnet50.preprocess_input,
    # rescale=1. / 255,   #####已经归一化,所以注释
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode="nearest"
)
valid_datagen = ImageDataGenerator(
    ##########模型微调
    preprocessing_function=keras.applications.resnet50.preprocess_input,
)
batch_size = 32

train_generator = train_datagen.flow_from_directory(
    "D:/monkey10_species/training/training",
    target_size=(height, width),
    batch_size=batch_size,
    seed=10,
    shuffle=True,
    class_mode="categorical"
)

train_nums = train_generator.samples

validation_generator = valid_datagen.flow_from_directory(
    "D:/monkey10_species/validation/validation",
    target_size=(height, width),
    batch_size=batch_size,
    seed=10,
    shuffle=False,
    class_mode="categorical"
)
validation_nums = validation_generator.samples

epoches = 100
history = resNet50_fineTuneModel.fit_generator(

    train_generator,
    steps_per_epoch=train_nums // batch_size,
    epochs=epoches,
    validation_data=validation_generator,
    validation_steps=validation_nums // batch_size

)

print(history.history.keys())
acc = history.history["acc"]
val_acc = history.history["val_acc"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]

Epoches = range(1, len(acc) + 1)

plt.plot(Epoches, acc, "bo", label="Traing acc")
plt.plot(Epoches, val_acc, "b", label="Validation acc")
plt.title("Training and validation accuracy")
plt.legend()
plt.show()

plt.plot(Epoches, loss, "bo", label="Traing loss")
plt.plot(Epoches, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()
plt.show()

设置最后5层可训练

resNet50 = keras.applications.ResNet50(include_top = False,pooling="avg",weights="imagenet")
for layer in resNet50.layers[0:-5]:
    layer.trainable = False
resNet50_new = keras.models.Sequential()
resNet50_new.add(reesNet50)
resNet50_new.add(keras.layers.Dense(num_classes,activation="softmax")
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。