这篇文章我是基于一个博主文章改造的,但是这个博主有些方面没有说的很清楚,也可能是我比较愚昧的,所以关键的地方我都加了注释,让大家都知道,要想训练一个rnn,到底怎么组织输入,怎么利用输出(当然了,这是基于tensorflow,不同的框架可能有不同)。### 原博主文章在这
代码如下,如果有人看到觉得有用,并且给我点赞评论,那我将会好好修改修改,毕竟这位是动力嘛,🐎🐎
为了让大家清楚,附上一张图,一定要搞清楚LSTM的c和a(有些图叫h,没有区别,名字而已),这两个状态,切记切记
3. 我的代码[^code]
#写在最前面的话。LSTM(只要有两个状态都差不多)的输入一般是[batch_size, steps, one_hot编码或者embeeding],
#dynamic_rnn的outputs是[batch_size, steps, hidden_units],state(只包含最后两个状态,c,h,他们的shape一样)shape是[batch_size,hidden_units]
# 一般此时的W权重为[hidden_units, classes(需要分的类别数)],
#如果需要每一个输出,那么就有outputs
#最后重要的一点,因为我们是一个batch一个batch的输入,所以每次output都是针对batch的
#还有一个很简单的一点,因为x和h都住一个公式中运算然后相加,那么他们与各自的W相乘,shape肯定是一样的,
#现在单个x是[150, 83],那么Wx肯定是[83, 512],结果为[150,512],所以c(h也一样, c是由x和a得到的)也是[150, 512],那么推出
#Wa是[512, 512]
import time
from collections import namedtuple
import numpy as np
import tensorflow as tf
with open('data/shakespeare.txt', 'r') as f:
text = f.read()
vocab = set(text)
# vocab_to_int = {c: i for i, c in enumerate(vocab)}
# int_to_vocab = dict(enumerate(vocab))
# int_to_vocab = {i: c for i, c in enumerate(vocab)}
f = open('data/vocab_to_int.txt','r')
a = f.read()
vocab_to_int = eval(a)
f = open('data/int_to_vocab.txt','r')
a = f.read()
int_to_vocab = eval(a)
#对文本进行转码,就是将每个字符都转换为对应的数字
encoded = np.array([vocab_to_int[c] for c in text], dtype=np.int32)
#转码前
print(text[: 100])
#转码后
print(encoded[: 100])
#得到一个batch的数据
def get_batches(arr, n_seqs, n_steps):
'''
#对已有的数组进行mini-batch分割
arr: 待分割的数组
n_seqs: 一个batch中序列的个数
n_steps: 单个序列包含的字符数
'''
batch_size = n_steps * n_steps
n_batches = int(len(arr) / batch_size)
#这里我们仅保留完整的batch,对于多余的部分舍弃
arr = arr[: batch_size * n_batches]
arr = arr.reshape((n_seqs, -1))
for n in range(0, arr.shape[1], n_steps):
#inputs
x = arr[:, n: n+n_steps]
#targets
y = np.zeros_like(x)
y[:, : -1], y[:, -1] = x[:, 1:], x[:, 0]
yield x, y
batches = get_batches(encoded, 10, 50)
x, y = next(batches)
# print('x\n', x)
# print('\ny\n', y)
#构建输入层
def build_inputs(num_seqs, num_steps):
'''
构建输入层
num_seqs: 每个batch中的序列个数
num_steps: 每个序列包含的字符数
'''
inputs = tf.placeholder(tf.int32, shape=(num_seqs, num_steps), name='inputs')
targets = tf.placeholder(tf.int32, shape=(num_seqs, num_steps), name='targets')
#加入keep_prob,就是dropout选择随机失活节点比例
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
return inputs, targets, keep_prob
#构建LSTM层
def build_lstm(lstm_size, num_layers, batch_size, keep_prob):
'''
构建LSTM层
lstm_size: lstm中隐层节点数量
num_layers: lstm的隐层数目,这是堆叠lstm,有好几层
batch_size:
keep_prob:
'''
lstm_cells = []
for i in range(num_layers):
#构建一个基本的lstm单元
lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size)
#添加dropout
drop = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=keep_prob)
lstm_cells.append(drop)
#堆叠
cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)
# state_size是我们在定义MultiRNNCell的时就设置好了的,
# 只是我们的输入input shape=[batch_size, num_steps],
# 我们刚刚定义好的cell会依次接收num_steps个输入然后产生最后的state(n-tuple,n表示堆叠的层数)
# 但是一个batch内有batch_size这样的seq,因此就需要[batch_size,s]来存储整个batch每个seq的状态。
initial_state = cell.zero_state(batch_size, tf.float32)
return cell, initial_state
#构造输出层
def build_output(lstm_output, in_size, out_size):
'''
构造输出层
lstm_output: lstm层的输出结果
in_size: lstm输出层重塑后的size
out_size: sotfmax层的四则
'''
#将lstm的输出按照列concate,例如[[1, 2, 3], [7, 8, 9]]
#tf.concat的结果是[1, 2, 3, 7, 8, 9]
print('我是lstm_output:', lstm_output.shape) #(150, 100, 512)
seq_output = tf.concat(lstm_output, axis=1)
#reshape
x = tf.reshape(seq_output, [-1, in_size])
print('我是reshape之后的output:', x) #(15000, 512)
#及那个lstm层与sotfmax层全连接
with tf.variable_scope('sotfmax'):
sotfmax_w = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.1))
sotfmax_b = tf.Variable(tf.zeros(out_size))
#计算logits
logits = tf.matmul(x, sotfmax_w) + sotfmax_b
#softmax层返回概率分布
out = tf.nn.softmax(logits=logits, name='predictions')
return out, logits
#根据logits和targets计算损失
def build_loss(logits, targets, lstm_size, num_classes):
'''
根据logits和targets计算损失
logits: 全连接层的输出结果(不经过softmax)
targets:
lstm_size:
num_classes:
'''
#one-hot编码
y_one_hot = tf.one_hot(targets, num_classes)
y_reshaped = tf.reshape(y_one_hot, logits.get_shape())
#softmax cross entropy loss
loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_reshaped)
loss = tf.reduce_mean(loss)
return loss
#构造optimizer
def build_optimizer(loss, learning_rate, grad_clip):
'''
构造optimizer
loss: 损失
learning_rate: 学习率
'''
#使用clipping gradients
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), grad_clip)
train_op = tf.train.AdamOptimizer(learning_rate)
optimizer = train_op.apply_gradients(zip(grads, tvars))
return optimizer
#模型组合
class CharRNN:
def __init__(self, num_classes, batch_size=64, num_steps=50,
lstm_size=128, num_layers=2, learning_rate=0.001,
grad_clip=5, sampling=False):
#如果sampling是True,则采用SGD
if sampling == True:
batch_size, num_steps = 1, 1
else:
batch_size, num_steps = batch_size, num_steps
tf.reset_default_graph()
#输入层
self.inputs, self.targets, self.keep_prob = build_inputs(batch_size, num_steps)
#LSTM层
cell, self.initial_state = build_lstm(lstm_size, num_layers, batch_size, self.keep_prob)
#对输入进行one-hot编码
x_one_hot = tf.one_hot(self.inputs, num_classes)
print('我是x_one_hot:', x_one_hot.shape) #(150, 100, 83)
#运行RNN
#outputs输出的是最上面一层的输出(考虑了堆叠lstm的情况),states保存的是最后一个时间输出的states
#inputs是一整个tensor,num_steps是inputs的一个维度
#tf.nn.dynamic_rnn的x_in必须是3维的输入
outputs, state = tf.nn.dynamic_rnn(cell, x_one_hot, initial_state=self.initial_state)
print('我是dynamic_rnn之后的outputs:', outputs.shape) #(150, 100, 512)
self.final_state = state
print('我是state:', state) #元祖,包含c和h,第一个是c,第二个是和,他们shape相同,(150, 512)
#预测结果
self.prediction, self.logits = build_output(outputs, lstm_size, num_classes)
print('我是prediction,logits:', self.prediction, self.logits) #(15000, 83)
#Loss和optimizer(with gradient clipping)
self.loss = build_loss(self.logits, self.targets, lstm_size, num_classes)
self.optimizer = build_optimizer(self.loss, learning_rate, grad_clip)
#模型训练
# num_seqs: 单个batch中序列的个数
# num_steps: 单个序列中字符数目
# lstm_size: 隐层结点个数
# num_layers: LSTM层个数
# learning_rate: 学习率
# keep_prob: dropout层中保留结点比例
batch_size = 150
num_steps = 100
lstm_size = 512
num_layers = 2
learning_rate = 0.001
keep_prob = 0.5
epochs = 20
#每n轮进行一次变量保存
save_every_n = 200
model = CharRNN(len(vocab), batch_size=batch_size, num_steps=num_steps,
lstm_size=lstm_size, num_layers=num_layers,
learning_rate=learning_rate)
saver = tf.train.Saver(max_to_keep=10)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
counter = 0
for e in range(epochs):
#Train network
new_state = sess.run(model.initial_state)
loss = 0
for x, y in get_batches(encoded, batch_size, num_steps):
counter += 1
start = time.time()
feed = {
model.inputs : x,
model.targets : y,
model.keep_prob : keep_prob,
model.initial_state : new_state
}
batch_loss, new_state, _ = sess.run([model.loss,
model.final_state,
model.optimizer],
feed_dict=feed)
end = time.time()
#control the print lines
if counter % 100 == 0:
print('轮数:{}/{}...'.format(e+1, epochs),
'训练步数:{}...'.format(counter),
'训练误差:{:.4f}...'.format(batch_loss),
'{:.4f} sec/batch'.format((end-start)))
if counter % save_every_n == 0:
saver.save(sess, 'checkpoints/i{}_1{}.ckpt'.format(counter, lstm_size))
saver.save(sess, 'checkpoints/i{}_1{}.ckpt'.format(counter, lstm_size))
#查看checkpoints
print(tf.train.get_checkpoint_state('checkpoints'))
#从预测结果中选取前top_n个最有可能的字符
def pick_top_n(preds, vocab_size, top_n = 5):
'''
从预测结果中选取钱top_n个最有可能的字符
preds: 预测结果
vocab_size:
top_n:
'''
p = np.squeeze(preds)
#将除了top_n个预测值的位置都置为0
p[np.argsort(p)[: -top_n]] = 0 #np.argsort()返回的是数组从小到大的索引值
#归一化概率
p = p / np.sum(p)
#随机选取一个字符
c = np.random.choice(vocab_size, 1, p=p)[0]
return c
#生成新文本
def sample(checkpoint, n_samples, lstm_size, vocab_size, prime='The '):
'''
生成新文本
checkpoint: 某一轮迭代的参数文件
n_samples: 新文本的字符长度
lstm_size: 隐层节点数
vocab_size:
prime: 起始文本
'''
#将输入的单词转换为单个字符组成的list
samples = [c for c in prime]
#sampling=True意味着batch的size=1 x 1
model = CharRNN(len(vocab), lstm_size=lstm_size, sampling=True)
saver = tf.train.Saver()
with tf.Session() as sess:
#加载模型参数,恢复训练
saver.restore(sess, checkpoint)
new_state = sess.run(model.initial_state)
for c in prime:
x = np.zeros((1, 1))
#输入单个字符
x[0, 0] = vocab_to_int[c]
feed = {
model.inputs: x,
model.keep_prob: 1.,
model.initial_state: new_state
}
preds, new_state = sess.run([
model.prediction, model.final_state
], feed_dict=feed)
c = pick_top_n(preds, len(vocab))
#添加字符到samples中
samples.append(int_to_vocab[c])
#不断生成字符,直到达到指定数目
for i in range(n_samples):
x[0, 0] = c
feed = {
model.inputs : x,
model.keep_prob : 1.,
model.initial_state : new_state
}
preds, new_state = sess.run([model.prediction, model.final_state],
feed_dict=feed)
c = pick_top_n(preds, len(vocab))
samples.append(int_to_vocab[c])
return ''.join(samples)
print(tf.train.latest_checkpoint('checkpoints'))
#选用最终的训练参数作为输入进行文本生成
checkpoints = tf.train.latest_checkpoint('checkpoints')
samp = sample(checkpoints, 500, lstm_size, len(vocab), prime='Shu Xu ')
print(samp)
#
# checkpoint = 'checkpoints\\i3960_1512.ckpt'
# samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far")
# print(samp)
#
# checkpoint = 'checkpoints\\i3960_1512.ckpt'
# samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Shu ")
# print(samp)