LSDA

LDA

PCA,ICA,对于样本数据来言,可以是没有类别标签y的。

线性判别分析(二类情况)y=1或y=0,给定特征为d维的N个样例,我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够清晰地反应在低维数据上,也就是这一维就能决定每个样例的类别。
假设x是2维的,我们就要找一条直线(方向为w)来做投影,寻找最能使样本点分离的直线。

图一 使样本点分离的直线

 右图比较好,可以很好地将不同类别的样本点分离。
 从定量的角度来寻找最佳的w。



1.寻找每类样本的均值(中心点:


图二 每类样本的中心点

由x到w投影后的样本点均值为:
投影后的样本点均值

可知,投影后的均值即样本中心点的投影。
2.最佳的直线的确定:投影后的两类样本中心点尽量分离。


J(w)越大越好,同时还要考虑样本点之间的方差,方差越大,样本点越难以分离。
 使用另外一个度量值,称作散列值,对投影后的类求散列值,如下:

散列值

 可以看出,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。
 所以,最终的度量公式是:


我们只需要寻找使J(w)最大的w即可。


公式推导


前面是针对只有两个类的情况,假设类别变成多个了,一维可能已经不能满足要求,假设有C个类别,需要k维向量(基向量)来做投影。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容

  • 注:题中所指的『机器学习』不包括『深度学习』。本篇文章以理论推导为主,不涉及代码实现。 前些日子定下了未来三年左右...
    我偏笑_NSNirvana阅读 39,911评论 12 145
  • 本文结构: 什么是 LDA 和 PCA 区别 LDA 投影的计算过程 LDA 降维的例子 1. 什么是 LDA 先...
    不会停的蜗牛阅读 7,037评论 0 20
  • 转自:主成分分析 - xiaoyu714543065的专栏 - 博客频道 - CSDN.NET 问题...
    horu阅读 1,182评论 1 3
  • 心理脆弱,容易受伤的人,将被历史淘汰。 挫折很重要,而你的想法更重要。因为伤害人最深的往往不是挫折本身,是你的想法...
    乐为阅读 223评论 0 1
  • 当你开始习惯在依靠空调降温的城市生活时;当你开始认为绿水青山只会出现在画卷里时;当你正顶着高楼大厦一样的压...
    枝然阅读 519评论 13 9