[PyTorch]加载data以及vocabulary_来自transformer-xl,

  • corpus = get_lm_corpus(args.data, args.dataset),可以通过这里设置各个数据集特殊的参数,比如词表,以及是否大小写。
  • **kwargs,先使用一个一个字典获取特殊的参数,然后传递给函数
a = {'a':123,'c':234}
def fun(a='1',b='2',c='3'):
    print(a)
    print(b)
    print(c)
fun(**a)
def get_lm_corpus(datadir, dataset):
    fn = os.path.join(datadir, 'cache.pt')
    if os.path.exists(fn):
        print('Loading cached dataset...')
        corpus = torch.load(fn)
    else:
        print('Producing dataset {}...'.format(dataset))
        kwargs = {}
        if dataset in ['wt103', 'wt2']:
            kwargs['special'] = ['<eos>']
            kwargs['lower_case'] = False
        elif dataset == 'ptb':
            kwargs['special'] = ['<eos>']
            kwargs['lower_case'] = True
        elif dataset == 'lm1b':
            kwargs['special'] = []
            kwargs['lower_case'] = False
            kwargs['vocab_file'] = os.path.join(datadir, '1b_word_vocab.txt')
        elif dataset in ['enwik8', 'text8']:
            pass

        corpus = Corpus(datadir, dataset, **kwargs)
        torch.save(corpus, fn)

    return corpus

单词表

  • 对一些 特殊的字符设置比如unk设置到词典的属性上self.unk_idx调用相应的
def add_special(self, sym):
    if sym not in self.sym2idx:
        self.idx2sym.append(sym)
        self.sym2idx[sym] = len(self.idx2sym) - 1
        setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym])
  • 使用Counter统计词频
self.counter = Counter() 
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
  • 里面直接有转成tensor的
def convert_to_tensor(self, symbols):
    return torch.LongTensor(self.get_indices(symbols))
  • 进一步直接把训练数据变成tensor list,注意上面的torch.LongTensor是没有.to(device)的,因此这些东西首先会被放入内存中,只有用到的时候才会被放入显存毫无压力。
def encode_file(self, path, ordered=False, verbose=False, add_eos=True,
        add_double_eos=False):
    if verbose: print('encoding file {} ...'.format(path))
    assert os.path.exists(path)
    encoded = []
    with open(path, 'r', encoding='utf-8') as f:
        for idx, line in enumerate(f):
            if verbose and idx > 0 and idx % 500000 == 0:
                print('    line {}'.format(idx))
            symbols = self.tokenize(line, add_eos=add_eos,
                add_double_eos=add_double_eos)
            encoded.append(self.convert_to_tensor(symbols))

    if ordered:
        encoded = torch.cat(encoded)

    return encoded
class Vocab(object):
    def __init__(self, special=[], min_freq=0, max_size=None, lower_case=True,
                 delimiter=None, vocab_file=None):
        self.counter = Counter()
        self.special = special
        self.min_freq = min_freq
        self.max_size = max_size
        self.lower_case = lower_case
        self.delimiter = delimiter
        self.vocab_file = vocab_file

    def tokenize(self, line, add_eos=False, add_double_eos=False):
        line = line.strip()
        # convert to lower case
        if self.lower_case:
            line = line.lower()

        # empty delimiter '' will evaluate False
        if self.delimiter == '':
            symbols = line
        else:
            symbols = line.split(self.delimiter)

        if add_double_eos: # lm1b
            return ['<S>'] + symbols + ['<S>']
        elif add_eos:
            return symbols + ['<eos>']
        else:
            return symbols

    def count_file(self, path, verbose=False, add_eos=False):
        if verbose: print('counting file {} ...'.format(path))
        assert os.path.exists(path)

        sents = []
        with open(path, 'r', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if verbose and idx > 0 and idx % 500000 == 0:
                    print('    line {}'.format(idx))
                symbols = self.tokenize(line, add_eos=add_eos)
                self.counter.update(symbols)
                sents.append(symbols)

        return sents

    def count_sents(self, sents, verbose=False):
        """
            sents : a list of sentences, each a list of tokenized symbols
        """
        if verbose: print('counting {} sents ...'.format(len(sents)))
        for idx, symbols in enumerate(sents):
            if verbose and idx > 0 and idx % 500000 == 0:
                print('    line {}'.format(idx))
            self.counter.update(symbols)

    def _build_from_file(self, vocab_file):
        self.idx2sym = []
        self.sym2idx = OrderedDict()

        with open(vocab_file, 'r', encoding='utf-8') as f:
            for line in f:
                symb = line.strip().split()[0]
                self.add_symbol(symb)
        self.unk_idx = self.sym2idx['<UNK>']

    def build_vocab(self):
        if self.vocab_file:
            print('building vocab from {}'.format(self.vocab_file))
            self._build_from_file(self.vocab_file)
            print('final vocab size {}'.format(len(self)))
        else:
            print('building vocab with min_freq={}, max_size={}'.format(
                self.min_freq, self.max_size))
            self.idx2sym = []
            self.sym2idx = OrderedDict()

            for sym in self.special:
                self.add_special(sym)

            for sym, cnt in self.counter.most_common(self.max_size):
                if cnt < self.min_freq: break
                self.add_symbol(sym)

            print('final vocab size {} from {} unique tokens'.format(
                len(self), len(self.counter)))

    def encode_file(self, path, ordered=False, verbose=False, add_eos=True,
            add_double_eos=False):
        if verbose: print('encoding file {} ...'.format(path))
        assert os.path.exists(path)
        encoded = []
        with open(path, 'r', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if verbose and idx > 0 and idx % 500000 == 0:
                    print('    line {}'.format(idx))
                symbols = self.tokenize(line, add_eos=add_eos,
                    add_double_eos=add_double_eos)
                encoded.append(self.convert_to_tensor(symbols))

        if ordered:
            encoded = torch.cat(encoded)

        return encoded

    def encode_sents(self, sents, ordered=False, verbose=False):
        if verbose: print('encoding {} sents ...'.format(len(sents)))
        encoded = []
        for idx, symbols in enumerate(sents):
            if verbose and idx > 0 and idx % 500000 == 0:
                print('    line {}'.format(idx))
            encoded.append(self.convert_to_tensor(symbols))

        if ordered:
            encoded = torch.cat(encoded)

        return encoded

    def add_special(self, sym):
        if sym not in self.sym2idx:
            self.idx2sym.append(sym)
            self.sym2idx[sym] = len(self.idx2sym) - 1
            setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym])

    def add_symbol(self, sym):
        if sym not in self.sym2idx:
            self.idx2sym.append(sym)
            self.sym2idx[sym] = len(self.idx2sym) - 1

    def get_sym(self, idx):
        assert 0 <= idx < len(self), 'Index {} out of range'.format(idx)
        return self.idx2sym[idx]

    def get_idx(self, sym):
        if sym in self.sym2idx:
            return self.sym2idx[sym]
        else:
            # print('encounter unk {}'.format(sym))
            assert '<eos>' not in sym
            assert hasattr(self, 'unk_idx')
            return self.sym2idx.get(sym, self.unk_idx)

    def get_symbols(self, indices):
        return [self.get_sym(idx) for idx in indices]

    def get_indices(self, symbols):
        return [self.get_idx(sym) for sym in symbols]

    def convert_to_tensor(self, symbols):
        return torch.LongTensor(self.get_indices(symbols))

    def convert_to_sent(self, indices, exclude=None):
        if exclude is None:
            return ' '.join([self.get_sym(idx) for idx in indices])
        else:
            return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude])

    def __len__(self):
        return len(self.idx2sym)
class Corpus(object):
    def __init__(self, path, dataset, *args, **kwargs):
        self.dataset = dataset
        self.vocab = Vocab(*args, **kwargs)

        if self.dataset in ['ptb', 'wt2', 'enwik8', 'text8']:
            self.vocab.count_file(os.path.join(path, 'train.txt'))
            self.vocab.count_file(os.path.join(path, 'valid.txt'))
            self.vocab.count_file(os.path.join(path, 'test.txt'))
        elif self.dataset == 'wt103':
            self.vocab.count_file(os.path.join(path, 'train.txt'))
        elif self.dataset == 'lm1b':
            train_path_pattern = os.path.join(
                path, '1-billion-word-language-modeling-benchmark-r13output',
                'training-monolingual.tokenized.shuffled', 'news.en-*')
            train_paths = glob.glob(train_path_pattern)
            # the vocab will load from file when build_vocab() is called

        self.vocab.build_vocab()

        if self.dataset in ['ptb', 'wt2', 'wt103']:
            self.train = self.vocab.encode_file(
                os.path.join(path, 'train.txt'), ordered=True)
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=True)
            self.test  = self.vocab.encode_file(
                os.path.join(path, 'test.txt'), ordered=True)
        elif self.dataset in ['enwik8', 'text8']:
            self.train = self.vocab.encode_file(
                os.path.join(path, 'train.txt'), ordered=True, add_eos=False)
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=True, add_eos=False)
            self.test  = self.vocab.encode_file(
                os.path.join(path, 'test.txt'), ordered=True, add_eos=False)
        elif self.dataset == 'lm1b':
            self.train = train_paths
            self.valid = self.vocab.encode_file(
                os.path.join(path, 'valid.txt'), ordered=False, add_double_eos=True)
            self.test  = self.vocab.encode_file(
                os.path.join(path, 'test.txt'), ordered=False, add_double_eos=True)

    def get_iterator(self, split, *args, **kwargs):
        if split == 'train':
            if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
                data_iter = LMOrderedIterator(self.train, *args, **kwargs)
            elif self.dataset == 'lm1b':
                kwargs['shuffle'] = True
                data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
        elif split in ['valid', 'test']:
            data = self.valid if split == 'valid' else self.test
            if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
                data_iter = LMOrderedIterator(data, *args, **kwargs)
            elif self.dataset == 'lm1b':
                data_iter = LMShuffledIterator(data, *args, **kwargs)

        return data_iter

Iterator

  • 然后把上面 vocabulary中得到的 tensor listdata 参数传递给迭代器类,迭代器类中传入devicebsz,然后每次都把多于的去掉了相当于drop reminders==True.narrow(dim, index, size)意思是dim维度从index开始取,取sizedim维度的元素。
self.n_step = data.size(0) // bsz

# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
  • shuffle的时候也不是整个打乱,而是仅仅打乱index
def get_sent_stream(self):
    # index iterator
    epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \
        else np.array(range(len(self.data)))

    # sentence iterator
    for idx in epoch_indices:
        yield self.data[idx]
class LMOrderedIterator(object):
    def __init__(self, data, bsz, bptt, device='cpu', ext_len=None):
        """
            data -- LongTensor -- the LongTensor is strictly ordered
        """
        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device

        # Work out how cleanly we can divide the dataset into bsz parts.
        self.n_step = data.size(0) // bsz

        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        data = data.narrow(0, 0, self.n_step * bsz)

        # Evenly divide the data across the bsz batches.
        self.data = data.view(bsz, -1).t().contiguous().to(device)

        # Number of mini-batches
        self.n_batch = (self.n_step + self.bptt - 1) // self.bptt

    def get_batch(self, i, bptt=None):
        if bptt is None: bptt = self.bptt
        seq_len = min(bptt, self.data.size(0) - 1 - i)

        end_idx = i + seq_len
        beg_idx = max(0, i - self.ext_len)

        data = self.data[beg_idx:end_idx]
        target = self.data[i+1:i+1+seq_len]

        return data, target, seq_len

    def get_fixlen_iter(self, start=0):
        for i in range(start, self.data.size(0) - 1, self.bptt):
            yield self.get_batch(i)

    def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
        max_len = self.bptt + max_deviation * std
        i = start
        while True:
            bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.
            bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
            data, target, seq_len = self.get_batch(i, bptt)
            i += seq_len
            yield data, target, seq_len
            if i >= self.data.size(0) - 2:
                break

    def __iter__(self):
        return self.get_fixlen_iter()


class LMShuffledIterator(object):
    def __init__(self, data, bsz, bptt, device='cpu', ext_len=None, shuffle=False):
        """
            data -- list[LongTensor] -- there is no order among the LongTensors
        """
        self.data = data

        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device
        self.shuffle = shuffle

    def get_sent_stream(self):
        # index iterator
        epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \
            else np.array(range(len(self.data)))

        # sentence iterator
        for idx in epoch_indices:
            yield self.data[idx]

    def stream_iterator(self, sent_stream):
        # streams for each data in the batch
        streams = [None] * self.bsz

        data = torch.LongTensor(self.bptt, self.bsz)
        target = torch.LongTensor(self.bptt, self.bsz)

        n_retain = 0

        while True:
            # data   : [n_retain+bptt x bsz]
            # target : [bptt x bsz]
            data[n_retain:].fill_(-1)
            target.fill_(-1)

            valid_batch = True

            for i in range(self.bsz):
                n_filled = 0
                try:
                    while n_filled < self.bptt:
                        if streams[i] is None or len(streams[i]) <= 1:
                            streams[i] = next(sent_stream)
                        # number of new tokens to fill in
                        n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
                        # first n_retain tokens are retained from last batch
                        data[n_retain+n_filled:n_retain+n_filled+n_new, i] = \
                            streams[i][:n_new]
                        target[n_filled:n_filled+n_new, i] = \
                            streams[i][1:n_new+1]
                        streams[i] = streams[i][n_new:]
                        n_filled += n_new
                except StopIteration:
                    valid_batch = False
                    break

            if not valid_batch:
                return

            data = data.to(self.device)
            target = target.to(self.device)

            yield data, target, self.bptt

            n_retain = min(data.size(0), self.ext_len)
            if n_retain > 0:
                data[:n_retain] = data[-n_retain:]
            data.resize_(n_retain + self.bptt, data.size(1))

    def __iter__(self):
        # sent_stream is an iterator
        sent_stream = self.get_sent_stream()

        for batch in self.stream_iterator(sent_stream):
            yield batch


class LMMultiFileIterator(LMShuffledIterator):
    def __init__(self, paths, vocab, bsz, bptt, device='cpu', ext_len=None,
        shuffle=False):

        self.paths = paths
        self.vocab = vocab

        self.bsz = bsz
        self.bptt = bptt
        self.ext_len = ext_len if ext_len is not None else 0

        self.device = device
        self.shuffle = shuffle

    def get_sent_stream(self, path):
        sents = self.vocab.encode_file(path, add_double_eos=True)
        if self.shuffle:
            np.random.shuffle(sents)
        sent_stream = iter(sents)

        return sent_stream

    def __iter__(self):
        if self.shuffle:
            np.random.shuffle(self.paths)

        for path in self.paths:
            # sent_stream is an iterator
            sent_stream = self.get_sent_stream(path)
            for batch in self.stream_iterator(sent_stream):
                yield batch

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。