无标题文章

  1. 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分类,回归

  2. 概念学习:人类学习概念:鸟,车,计算机

    定义:概念学习是指从有关某个布尔函数的输入输出训练样例中推断出该布尔函数

  3. 例子:学习 “享受运动" 这一概念:

    小明进行水上运动,是否享受运动取决于很多因素

样例天气温度湿度风力水温预报享受运动1晴暖普通强暖一样是2晴暖大强暖一样是3雨冷大强暖变化否4晴暖大强冷变化是

 天气:晴,阴,雨 
 温度:暖,冷
 湿度:普通,大
 风力:强,弱
 水温:暖,冷
 预报:一样,变化
 
 享受运动:是,否


 概念定义在实例(instance)集合之上,这个集合表示为X。(X:所有可能的日子,每个日子的值由 天气,温度,湿度,风力,水温,预          报6个属性表示。
 待学习的概念或目标函数成为目标概念(target concept), 记做c。
 c(x) = 1, 当享受运动时, c(x) = 0 当不享受运动时,c(x)也可叫做y
 x: 每一个实例
 X: 样例, 所有实例的集合
 学习目标:f: X -> Y
  1. 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集
    测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集
    特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例
    标记(label): c(x), 实例类别的标记
    正例(positive example)
    反例(negative example)
  1. 例子:研究美国硅谷房价
    影响房价的两个重要因素:面积(平方米),学区(评分1-10)

样例面积(平方米)学区 (11.2 深度学习(Deep Learning)介绍-10)房价 (1000$)1100810002120913003606800480911005955850

  1. 分类 (classification): 目标标记为类别型数据(category)
    回归(regression): 目标标记为连续性数值 (continuous numeric value)
  1. 例子:研究肿瘤良性,恶性于尺寸,颜色的关系
    特征值:肿瘤尺寸,颜色
    标记:良性/恶性

    有监督学习(supervised learning): 训练集有类别标记(class label)
    无监督学习(unsupervised learning): 无类别标记(class label)
    半监督学习(semi-supervised learning):有类别标记的训练集 + 无标记的训练集

  1. 机器学习步骤框架

    8.1 把数据拆分为训练集和测试集
    8.2 用训练集和训练集的特征向量来训练算法
    8.2 用学习来的算法运用在测试集上来评估算法 (可能要设计到调整参数(parameter tuning), 用验证集(validation set)

100 天: 训练集
10天:测试集 (不知道是否 ” 享受运动“, 知道6个属性,来预测每一天是否享受运动)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容

  • 测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测...
    七魂之月阅读 890评论 1 16
  • 目录 [TOC] 引言 量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来...
    雷达熊阅读 969评论 0 2
  • > # **Udacity--毕业项目开题报告** > ### 报告作者:MingJun-Li # 一、定义 # ...
    李明骏_老思机阅读 973评论 0 0
  • 很早前画的,因为稿已不在我这,所以拍不了清晰的图了,伤心
    李抒微阅读 147评论 1 1
  • 還是會想妳,但ㄧ想到妳和她一起,我又不想妳了。我告訴自己不能再想妳,因為痛了就不想再痛第二次第三次了,因為懂了,懂...
    西塵風阅读 290评论 0 0