Spark Streaming 误用.transform(func)函数导致的问题解析

Spark/Spark Streaming transform 是一个很强的方法,不过使用过程中可能也有一些值得注意的问题。在分析的问题,我们还会顺带讨论下Spark Streaming 生成job的逻辑,从而让大家知道问题的根源。

问题描述

今天有朋友贴了一段 gist,大家可以先看看这段代码有什么问题。

特定情况你会发现UI 的Storage标签上有很多新的Cache RDD,然后你以为是Cache RDD 不被释放,但是通过Spark Streaming 数据清理机制分析我们可以排除这个问题。

接着通过给RDD的设置名字,名字带上时间,发现是延时的Batch 也会产生cache RDD。那这是怎么回事呢?

另外还有一个问题,也是相同的原因造成的:我通过KafkaInputStream.transform 方法获取Kafka偏移量,并且保存到HDFS上。然后发现一旦产生job(包括并没有执行的Job),都会生成了Offset,这样如果出现宕机,你看到的最新Offset 其实就是延时的,而不是出现故障时的Offset了。这样做恢复就变得困难了。

问题分析

其实是这样,在transform里你可以做很多复杂的工作,但是transform接受到的函数比较特殊,是会在TransformedDStream.compute方法中执行的,你需要确保里面的动作都是transformation(延时的),而不能是Action(譬如第一个例子里的count动作),或者不能有立即执行的(比如我提到的例子里的自己通过HDFS API 将Kafka偏移量保存到HDFS)。

override def compute(validTime: Time): Option[RDD[U]] = {
    val parentRDDs = parents.map { parent => 
    ....
  //看这一句,你的函数在调用compute方法时,就会被调用
    val transformedRDD = transformFunc(parentRDDs, validTime)
    if (transformedRDD == null) {
      throw new SparkException.....
    }
    Some(transformedRDD)
  }

这里有两个疑问:

  • 那些.map .transform 都是transformation,不是只有真实被提交后才会被执行么?
  • DStream.compute 方法为什么会在generateJob的时候就被调用呢?

Spark Streaming generateJob 逻辑解析

在JobGenerator中,会定时产生一个GenerateJobs的事件:

private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,  longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

该事件会被DStreamGraph.generateJobs 处理,产生Job的逻辑 也很简单,

def generateJobs(time: Time): Seq[Job] = {   
    val jobs = this.synchronized {
      outputStreams.flatMap { outputStream =>
        val jobOption = outputStream.generateJob(time)
        ........    
  }

就是调用各个outputStream 的generateJob方法,典型的outputStream如ForEachDStream。 以ForEachDStream为例,产生job的方式如下:

override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
          foreachFunc(rdd, time)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }

我们看到,在这里会触发所有的DStream链进行compute动作。也就意味着所有transformation产生的DStream的compute方法都会被调用。

正常情况下不会有什么问题,比如.map(func) 产生的MappedDStream里面在compute执行时,func 都是被记住而不是被执行。但是TransformedDStream 是比较特殊的,对应的func是会被执行的,在对应的compute方法里,你会看到这行代码:

val transformedRDD = transformFunc(parentRDDs, validTime)

这里的transformFunc 就是transform(func)里的func了。然而transform 又特别灵活,可以执行各种RDD操作,这个时候Spark Streaming 是拦不住你的,一旦你使用了count之类的Action,产生Job的时候就会被立刻执行,而不是等到Job被提交才执行。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容