Java并发JUC——线程池

前言

  • 如果不使用线程池,每个任务都需要新开一个线程处理
  • 这样开销太大,我们希望有固定数量的线程来执行任务,这样就避免了反复创建并销毁线程所带来的开销问题

为什么要使用线程池

  • 反复创建线程开销大
  • 过多的线程会占用太多的内存

解决以上两个问题的思路:

  • 用少量的线程——避免内存占用过多
  • 让这部分线程都保持工作,且可以反复执行任务,避免生命周期的损耗

线程池的好处

  • 加快响应速度
  • 合理利用CPU和内存
  • 统一管理资源

线程池适合应用的场合

  • 服务器接受到大量请求时,使用线程池技术是非常适合的,它可以大大减少线程的创建和销毁次数,以提高服务器的工作效率
  • 实际上,在开发中,如果需要创建5个以上的线程,那么就可以使用线程池来管理

创建和停止线程池

  • 线程池构造函数的参数
  • 线程池应该手动创建还是自动创建
  • 线程池里的线程数量设定为多少比较合适?
  • 停止线程池的正确方法

线程池构造函数的参数

添加线程的规则

  • 1、如果线程数小于corePoolSize,即使其他工作线程处于空闲状态,也会创建一个新线程来运行新任务
  • 2、如果线程数等于(或大于)corePoolSize但少于maximumPoolSize,则将任务放入队列
  • 3、如果队列已满,并且线程数小于maxPoolSize,则创建一个新线程来运行任务
  • 4、如果队列已满,并且线程数大于或等于maxPoolSize,则拒绝该任务

增减线程的特点

  • 1、通过设置corePoolSize和maximumPoolSize相同,就可以创建固定大小的线程池
  • 2、线程池希望保持较少的线程数,并且只有在负载变得很大时才增加它
  • 3、通过设置maximumPoolSize为很高的值,例如Integer.MAX_VALUE,可以允许线程池容纳任意数量的并发任务
  • 4、只有在任务队列填满时才创建多于corePoolSize的线程,所以如果你使用的是无界队列(例如LinkedBlockingQueue),那么线程数就不会超过corePoolSize

keepAliveTime

  • 如果线程池当前的线程数多于corePoolSize,那么如果多于的线程空闲时间超过keepAliveTime,它们就会被终止

ThreadFactory 用来创建线程

  • 新的线程是由ThreadFactory创建的,默认使用Executors.defaultThreadFactory(),创建出来的线程都在同一个线程组,拥有同样的NORM_PRIORITY优先级并且都不是守护线程。如果自己指定ThreadFactory,那么就可以改变线程名、线程组、优先级、是否是守护线程等。

workQueue 任务队列

有3种常见的队列类型:

  • 1、直接交接:SynchronousQueue
  • 2、无界队列:LinkedBlockingQueue
  • 3、有界队列:ArrayBlockingQueue

线程池应该手动创建还是自动创建

  • 手动创建更好,因为这样可以让我们更加明确线程池的运行规则,避免资源耗尽的风险。
  • 让我们看看自动创建线程池(也就是直接调用JDK封装好的构造函数)可能带来的问题

newFixedThreadPool

  • 创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
  • 由于传进去LinkedBlockingQueue是没有容量上限的,所以当请求数越来越多,并且无法及时处理完毕的时候,也就是请求堆积的时候,会容易造成占用大量的内存,可能会导致OOM

newSingleThreadExecutor

  • 创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
  • 由源码可以看出和newFixedThreadPool的原理基本一样,只不过把线程数直接设置成了1,由于传进去的还是LinkedBlockingQueue,所以还是会导致同样的问题,就是当请求堆积的时候,可能会占用大量的内存

CachedThreadPool

  • 可缓存线程池
  • 特点:无界线程池,具有自动回收多于线程的功能


newCachedThreadPool

  • 创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
  • 这里的弊端在于第二个构造参数maximumPoolSize被设置为了Integer.MAX_VALUE,这可能会创建数量非常多的线程,,甚至导致OOM

ScheduledThreadPool

  • 支持定时及周期性任务执行的线程池

newScheduledThreadPool

  • 创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

正确创建线程池的方法

  • 根据不同的业务场景,自己设置线程池参数,比如我们的内存有多大,想要给线程取什么名字等

线程池里的线程数量设定为多少合适

  • CPU密集型(加密、计算hash等):最佳线程数为CPU核心数的1-2倍左右
  • 耗时I/O型(读写数据库、文件、网络读写等):最佳线程数一般会大于CPU核心数很多倍,以JVM线程监控显示繁忙情况为依据,保证线程空闲可以衔接上,参考Brain Goetz推荐的计算方法。
  • 线程数=CPU核心数*(1+平均等待时间 / 平均工作时间)

常见线程池的特点

  • FixedThreadPool


  • CachedThreadPool


  • ScheduledThreadPool
    支持定时及周期性任务执行的线程池

  • SingleThreadExecutor
    单线程的线程池:它只会用唯一的工作线程来执行任务
    他的原理和FixedThreadPool一样,但是此时的线程数量被设置为了1

以上4种线程池的构造函数的参数

阻塞队列分析

  • FixedThreadPool和SingleThreadExecutor的Queue是LinkedBlockingQueue
  • CachedThreadPool使用Queue是SynchronousQueue
  • ScheduledThreadPool使用的是延迟队列DelayedWorkQueue

WorkStealingPool

工作窃取线程池是JDK1.8加入的

  • 假设共有三个线程同时执行, A, B, C
  • 当A,B线程池尚未处理任务结束,而C已经处理完毕,则C线程会从A或者B中窃取任务执行,这就叫工作窃取
  • 假如A线程中的队列里面分配了5个任务,而B线程的队列中分配了1个任务,当B线程执行完任务后,它会主动的去A线程中窃取其他的任务进行执行
  • WorkStealingPool 背后是使用 ForkJoinPool实现的
  • 这个线程池和之前的都有很大不同
  • 子任务:这个任务可以产生子任务的话适用这种场景,比如二叉树的遍历、处理矩阵等
  • 窃取

停止线程池的正确方法

  • 1、shutdown()
    • 有序关闭,已提交任务继续执行
    • 不接受新任务
  • 2、shutdownNow()
    • 尝试停止所有正在执行的任务
    • 停止等待执行的任务,并返回等待执行的任务列表
  • 3、isShutdown
    • 当调用shutdown()或shutdownNow()方法后返回为true。
  • 4、isTerminated
    • 当调用shutdown()方法后,并且所有提交的任务完成后返回为true
    • 当调用shutdownNow()方法后,成功停止后返回为true
  • 5、awaitTermination(long timeout, TimeUnit unit)
    • 收到关闭请求后,所有任务执行完成、超时、线程被打断,阻塞直到三种情况任意一种发生
    • 参数可以设置超时时间与超时单位
    • 线程池关闭返回 true;超过设置时间未关闭,返回 false

任务太多怎么拒绝

拒绝时机

  • 1、当Executor关闭时,提交新任务会被拒绝
  • 2、当Executor对最大线程和工作队列容量使用的有限编边界趋于饱和时


线程池的拒绝策略

线程池中,有三个重要的参数,决定影响了拒绝策略:corePoolSize - 核心线程数,也即最小的线程数。workQueue - 阻塞队列 。maximumPoolSize - 最大线程数

当提交任务数大于 corePoolSize 的时候,会优先将任务放到 workQueue 阻塞队列中。当阻塞队列饱和后,会扩充线程池中线程数,直到达到 maximumPoolSize 最大线程数配置。此时,再多余的任务,则会触发线程池的拒绝策略了。

总结起来,也就是一句话,当提交的任务数大于(workQueue.size() + maximumPoolSize ),就会触发线程池的拒绝策略。

拒绝策略定义

拒绝策略提供顶级接口 RejectedExecutionHandler ,其中方法 rejectedExecution 即定制具体的拒绝策略的执行逻辑。

jdk默认提供了四种拒绝策略:

  • CallerRunsPolicy:当触发拒绝策略,只要线程池没有关闭的话,则使用调用线程直接运行任务。
    一般并发比较小,性能要求不高,不允许失败。但是,由于调用者自己运行任务,如果任务提交速度过快,可能导致程序阻塞,性能效率上必然的损失较大

  • AbortPolicy:丢弃任务,并抛出拒绝执行 RejectedExecutionException 异常信息。线程池默认的拒绝策略。必须处理好抛出的异常,否则会打断当前的执行流程,影响后续的任务执行。

  • DiscardPolicy:直接丢弃,其他啥都没有

  • DiscardOldestPolicy:当触发拒绝策略,只要线程池没有关闭的话,丢弃阻塞队列 workQueue 中最老的一个任务,并将新任务加入

测试拒绝策略

1、AbortPolicy

public class T2 {
    public static void main(String[] args) throws Exception{
        int corePoolSize = 5;
        int maximumPoolSize = 10;
        long keepAliveTime = 5;
        BlockingQueue<Runnable> workQueue = new LinkedBlockingQueue<Runnable>(10);
        RejectedExecutionHandler handler = new ThreadPoolExecutor.AbortPolicy();
        ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.SECONDS, workQueue, handler);
        for(int i=0; i<100; i++) {
            try {
                executor.execute(new Thread(() -> log.info(Thread.currentThread().getName() + " is running")));
            } catch (Exception e) {
                log.error(e.getMessage());
            }
        }
        executor.shutdown();
    }
}

如果 executor.execute()提交任务,由于会抛出 RuntimeException,没有try.catch处理异常信息的话,会中断调用者的处理流程,后续任务得不到执行(跑不完100个)。可自行测试下。

2、CallerRunsPolicy
主体代码同上,更换拒绝策略:
RejectedExecutionHandler handler =` `new` `ThreadPoolExecutor.CallerRunsPolicy();
运行后,在控制台console中能够看到的是,会有一部分的数据打印,显示的是 “main is running”,也即体现调用线程处理。

3、DiscardPolicy
更换拒绝策略
RejectedExecutionHandler handler =` `new` `ThreadPoolExecutor.DiscardPolicy();
直接丢弃任务,实际运行中,打印出的信息不会有100条。

4、DiscardOldestPolicy
同样的,更换拒绝策略:
RejectedExecutionHandler handler =` `new` `ThreadPoolExecutor.DiscardOldestPolicy();
实际运行,打印出的信息也会少于100条。

四种拒绝策略是相互独立无关的,选择何种策略去执行,还得结合具体的业务场景。实际工作中,一般直接使用 ExecutorService 的时候,都是使用的默认的 defaultHandler ,也即 AbortPolicy 策略。

钩子方法

  • beforeExecute():线程执行之前调用
  • afterExecute():线程执行之后调用
  • terminaerd():线程池退出时候调用
  • 每个任务执行前后
  • 日志、统计

线程池组成部分

  • 线程池管理器
  • 工作线程
  • 任务队列
  • 任务接口(Task)

Executor类图

线程池状态

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// Packing and unpacking ctl
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

其中ctl这个AtomicInteger的功能很强大,其高3位用于维护线程池运行状态,低29位维护线程池中线程数量

  • 1、RUNNING:-1<<COUNT_BITS,即高3位为1,低29位为0,该状态的线程池会接收新任务,也会处理在阻塞队列中等待处理的任务

  • 2、SHUTDOWN:0<<COUNT_BITS,即高3位为0,低29位为0,该状态的线程池不会再接收新任务,但还会处理已经提交到阻塞队列中等待处理的任务

  • 3、STOP:1<<COUNT_BITS,即高3位为001,低29位为0,该状态的线程池不会再接收新任务,不会处理在阻塞队列中等待的任务,而且还会中断正在运行的任务

  • 4、TIDYING:2<<COUNT_BITS,即高3位为010,低29位为0,所有任务都被终止了,workerCount为0,为此状态时还将调用terminated()方法

  • 5、TERMINATED:3<<COUNT_BITS,即高3位为100,低29位为0,terminated()方法调用完成后变成此状态

这些状态均由int型表示,大小关系为 RUNNING<SHUTDOWN<STOP<TIDYING<TERMINATED,这个顺序基本上也是遵循线程池从 运行 到 终止这个过程。

runStateOf(int c) 方法:c & 高3位为1,低29位为0的~CAPACITY,用于获取高3位保存的线程池状态

workerCountOf(int c)方法:c & 高3位为0,低29位为1的CAPACITY,用于获取低29位的线程数量

ctlOf(int rs, int wc)方法:参数rs表示runState,参数wc表示workerCount,即根据runState和workerCount打包合并成ctl

任务提交内部原理

1、execute() -- 提交任务

/**
 * Executes the given task sometime in the future.  The task
 * may execute in a new thread or in an existing pooled thread.
 * 在未来的某个时刻执行给定的任务。这个任务用一个新线程执行,或者用一个线程池中已经存在的线程执行
 *
 * If the task cannot be submitted for execution, either because this
 * executor has been shutdown or because its capacity has been reached,
 * the task is handled by the current {@code RejectedExecutionHandler}.
 *
 * 如果任务无法被提交执行,要么是因为这个Executor已经被shutdown关闭,要么是已经达到其容量上限,任务会被当前的RejectedExecutionHandler处理
 * @param command the task to execute
 * @throws RejectedExecutionException at discretion of
 *         {@code RejectedExecutionHandler}, if the task
 *         cannot be accepted for execution
 * @throws NullPointerException if {@code command} is null
 */
public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     * 如果运行的线程少于corePoolSize,尝试开启一个新线程去运行command,command作为这个线程的第一个任务
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     * 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程(因为可能存在有些线程在我们上次检查后死了) 或者 从我们进入这个方法后,pool被关闭了
     * 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,如果池中没有线程了,新开启 一个线程
     * 
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     * 如果无法将任务入队列(可能队列满了),需要新开区一个线程(自己:往maxPoolSize发展)
     * 如果失败了,说明线程池shutdown 或者 饱和了,所以我们拒绝任务
     */
    int c = ctl.get();

    //1、如果当前线程数少于corePoolSize(可能是由于addWorker()操作已经包含对线程池状态的判断,如此处没加,而入workQueue前加了)
    if (workerCountOf(c) < corePoolSize) {
        //addWorker()成功,返回
        if (addWorker(command, true))
            return;

        /**
         * 没有成功addWorker(),再次获取c(凡是需要再次用ctl做判断时,都会再次调用ctl.get())
         * 失败的原因可能是:
         * 1、线程池已经shutdown,shutdown的线程池不再接收新任务
         * 2、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize
         */
        c = ctl.get();
    }

    /**
     * 2、如果线程池RUNNING状态,且入队列成功
     */
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();//再次校验位

        /**
         * 再次校验放入workerQueue中的任务是否能被执行
         * 1、如果线程池不是运行状态了,应该拒绝添加新任务,从workQueue中删除任务
         * 2、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
         */
        //如果再次校验过程中,线程池不是RUNNING状态,并且remove(command)--workQueue.remove()成功,拒绝当前command
        if (! isRunning(recheck) && remove(command))
            reject(command);
        //如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null
        //为什么只检查运行的worker数量是不是0呢?? 为什么不和corePoolSize比较呢??
        //只保证有一个worker线程可以从queue中获取任务执行就行了??
        //因为只要还有活动的worker线程,就可以消费workerQueue中的任务
        else if (workerCountOf(recheck) == 0)
            //第一个参数为null,说明只为新建一个worker线程,没有指定firstTask
            //第二个参数为true代表占用corePoolSize,false占用maxPoolSize
            addWorker(null, false);
    }

    /**
     * 3、如果线程池不是running状态 或者 无法入队列
     *   尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command
     */
    else if (!addWorker(command, false))
        reject(command);
}

参数:
command 提交执行的任务,不能为空
执行流程:

  • 1、如果线程池当前线程数量少于corePoolSize,则addWorker(command, true)创建新worker线程,如创建成功返回,如没创建成功,则执行后续步骤;
    addWorker(command, true)失败的原因可能是:
    • A、线程池已经shutdown,shutdown的线程池不再接收新任务
    • B、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize
  • 2、如果线程池还在running状态,将task加入workQueue阻塞队列中,如果加入成功,进行double-check,如果加入失败(可能是队列已满),则执行后续步骤;
    double-check主要目的是判断刚加入workQueue阻塞队列的task是否能被执行
    • A、如果线程池已经不是running状态了,应该拒绝添加新任务,从workQueue中删除任务
    • B、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
  • 3、如果线程池不是running状态 或者 无法入队列,尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command

2、addWorker() -- 添加worker线程

/**
 * Checks if a new worker can be added with respect to current
 * pool state and the given bound (either core or maximum). If so,
 * the worker count is adjusted accordingly, and, if possible, a
 * new worker is created and started, running firstTask as its
 * first task. This method returns false if the pool is stopped or
 * eligible to shut down. It also returns false if the thread
 * factory fails to create a thread when asked.  If the thread
 * creation fails, either due to the thread factory returning
 * null, or due to an exception (typically OutOfMemoryError in
 * Thread.start()), we roll back cleanly.
 * 检查根据当前线程池的状态和给定的边界(core or maximum)是否可以创建一个新的worker
 * 如果是这样的话,worker的数量做相应的调整,如果可能的话,创建一个新的worker并启动,参数中的firstTask作为worker的第一个任务
 * 如果方法返回false,可能因为pool已经关闭或者调用过了shutdown
 * 如果线程工厂创建线程失败,也会失败,返回false
 * 如果线程创建失败,要么是因为线程工厂返回null,要么是发生了OutOfMemoryError
 *
 * @param firstTask the task the new thread should run first (or
 * null if none). Workers are created with an initial first task
 * (in method execute()) to bypass queuing when there are fewer
 * than corePoolSize threads (in which case we always start one),
 * or when the queue is full (in which case we must bypass queue).
 * Initially idle threads are usually created via
 * prestartCoreThread or to replace other dying workers.
 *
 * @param core if true use corePoolSize as bound, else
 * maximumPoolSize. (A boolean indicator is used here rather than a
 * value to ensure reads of fresh values after checking other pool
 * state).
 * @return true if successful
 */
private boolean addWorker(Runnable firstTask, boolean core) {
    //外层循环,负责判断线程池状态
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);//状态

        // Check if queue empty only if necessary.
        /**
         * 线程池的state越小越是运行状态,runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3
         * 1、如果线程池state已经至少是shutdown状态了
         * 2、并且以下3个条件任意一个是false
         *   rs == SHUTDOWN         (隐含:rs>=SHUTDOWN)false情况: 线程池状态已经超过shutdown,可能是stop、tidying、terminated其中一个,即线程池已经终止
         *   firstTask == null      (隐含:rs==SHUTDOWN)false情况: firstTask不为空,rs==SHUTDOWN 且 firstTask不为空,return false,场景是在线程池已经shutdown后,还要添加新的任务,拒绝
         *   ! workQueue.isEmpty()  (隐含:rs==SHUTDOWN,firstTask==null)false情况: workQueue为空,当firstTask为空时是为了创建一个没有任务的线程,再从workQueue中获取任务,如果workQueue已经为空,那么就没有添加新worker线程的必要了
         * return false,即无法addWorker()
         */
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        //内层循环,负责worker数量+1
        for (;;) {
            int wc = workerCountOf(c);//worker数量
            //如果worker数量>线程池最大上限CAPACITY(即使用int低29位可以容纳的最大值)
            //或者( worker数量>corePoolSize 或  worker数量>maximumPoolSize ),即已经超过了给定的边界
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;

            //调用unsafe CAS操作,使得worker数量+1,成功则跳出retry循环
            if (compareAndIncrementWorkerCount(c))
                break retry;

            //CAS worker数量+1失败,再次读取ctl
            c = ctl.get();  // Re-read ctl

            //如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
            // else CAS失败时因为workerCount改变了,继续内层循环尝试CAS对worker数量+1
        }
    }

    /**
     * worker数量+1成功的后续操作
     * 添加到workers Set集合,并启动worker线程
     */
    boolean workerStarted = false;
    boolean workerAdded = false;
    //1、设置worker这个AQS锁的同步状态state=-1
    //2、将firstTask设置给worker的成员变量firstTask
    //3、使用worker自身这个runnable,调用ThreadFactory创建一个线程,并设置给worker的成员变量thread
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //--------------------------------------------这部分代码是上锁的
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                // 当获取到锁后,再次检查
                int rs = runStateOf(ctl.get());
                //如果线程池在运行running<shutdown 或者 线程池已经shutdown,且firstTask==null(可能是workQueue中仍有未执行完成的任务,创建没有初始任务的worker线程执行)
                //worker数量-1的操作在addWorkerFailed()

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable 线程已经启动,抛非法线程状态异常
                        throw new IllegalThreadStateException();
                    workers.add(w);//workers是一个HashSet<Worker>

                    //设置最大的池大小largestPoolSize,workerAdded设置为true
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
                //--------------------------------------------
            } finally {
                mainLock.unlock();
            }

            //如果往HashSet中添加worker成功,启动线程
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        //如果启动线程失败
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

addWorker(Runnable firstTask, boolean core)
参数:
firstTask: worker线程的初始任务,可以为空
core: true:将corePoolSize作为上限,false:将maximumPoolSize作为上限
addWorker方法有4种传参的方式:

  • 1、addWorker(command, true)
  • 2、addWorker(command, false)
  • 3、addWorker(null, false)
  • 4、addWorker(null, true)

在execute方法中就使用了前3种,结合这个核心方法进行以下分析

  • 第一个:线程数小于corePoolSize时,放一个需要处理的task进Workers Set。如果Workers Set长度超过corePoolSize,就返回false
  • 第二个:当队列被放满时,就尝试将这个新来的task直接放入Workers Set,而此时Workers Set的长度限制是maximumPoolSize。如果线程池也满了的话就返回false
  • 第三个:放入一个空的task进workers Set,长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会去任务队列里拿任务,这样就相当于创建了一个新的线程,只是没有马上分配任务
  • 第四个:这个方法就是放一个null的task进Workers Set,而且是在小于corePoolSize时,如果此时Set中的数量已经达到corePoolSize那就返回false,什么也不干。实际使用中是在prestartAllCoreThreads()方法,这个方法用来为线程池预先启动corePoolSize个worker等待从workQueue中获取任务执行
    执行流程:
  • 1、判断线程池当前是否为可以添加worker线程的状态,可以则继续下一步,不可以return false:
    • A、线程池状态>shutdown,可能为stop、tidying、terminated,不能添加worker线程
    • B、线程池状态==shutdown,firstTask不为空,不能添加worker线程,因为shutdown状态的线程池不接收新任务
    • C、线程池状态==shutdown,firstTask==null,workQueue为空,不能添加worker线程,因为firstTask为空是为了添加一个没有任务的线程再从workQueue获取task,而workQueue为空,说明添加无任务线程已经没有意义
  • 2、线程池当前线程数量是否超过上限(corePoolSize 或 maximumPoolSize),超过了return false,没超过则对workerCount+1,继续下一步
  • 3、在线程池的ReentrantLock保证下,向Workers Set中添加新创建的worker实例,添加完成后解锁,并启动worker线程,如果这一切都成功了,return true,如果添加worker入Set失败或启动失败,调用addWorkerFailed()逻辑

3、内部类Worker

/**
 * Class Worker mainly maintains interrupt control state for
 * threads running tasks, along with other minor bookkeeping.
 * This class opportunistically extends AbstractQueuedSynchronizer
 * to simplify acquiring and releasing a lock surrounding each
 * task execution.  This protects against interrupts that are
 * intended to wake up a worker thread waiting for a task from
 * instead interrupting a task being run.  We implement a simple
 * non-reentrant mutual exclusion lock rather than use
 * ReentrantLock because we do not want worker tasks to be able to
 * reacquire the lock when they invoke pool control methods like
 * setCorePoolSize.  Additionally, to suppress interrupts until
 * the thread actually starts running tasks, we initialize lock
 * state to a negative value, and clear it upon start (in
 * runWorker).
 *
 * Worker类大体上管理着运行线程的中断状态 和 一些指标
 * Worker类投机取巧的继承了AbstractQueuedSynchronizer来简化在执行任务时的获取、释放锁
 * 这样防止了中断在运行中的任务,只会唤醒(中断)在等待从workQueue中获取任务的线程
 * 解释:
 *   为什么不直接执行execute(command)提交的command,而要在外面包一层Worker呢??
 *   主要是为了控制中断
 *   用什么控制??
 *   用AQS锁,当运行时上锁,就不能中断,TreadPoolExecutor的shutdown()方法中断前都要获取worker锁
 *   只有在等待从workQueue中获取任务getTask()时才能中断
 * worker实现了一个简单的不可重入的互斥锁,而不是用ReentrantLock可重入锁
 * 因为我们不想让在调用比如setCorePoolSize()这种线程池控制方法时可以再次获取锁(重入)
 * 解释:
 *   setCorePoolSize()时可能会interruptIdleWorkers(),在对一个线程interrupt时会要w.tryLock()
 *   如果可重入,就可能会在对线程池操作的方法中中断线程,类似方法还有:
 *   setMaximumPoolSize()
 *   setKeppAliveTime()
 *   allowCoreThreadTimeOut()
 *   shutdown()
 * 此外,为了让线程真正开始后才可以中断,初始化lock状态为负值(-1),在开始runWorker()时将state置为0,而state>=0才可以中断
 * 
 * 
 * Worker继承了AQS,实现了Runnable,说明其既是一个可运行的任务,也是一把锁(不可重入)
 */
private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;//利用ThreadFactory和 Worker这个Runnable创建的线程对象
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;

    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        //设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被获取
        setState(-1); // inhibit interrupts until runWorker
        // 在调用runWorker()前,禁止interrupt中断,在interruptIfStarted()方法中会判断 getState()>=0
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
        //根据当前worker创建一个线程对象
        //当前worker本身就是一个runnable任务,也就是不会用参数的firstTask创建线程,而是调用当前worker.run()时调用firstTask.run()
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);//runWorker()是ThreadPoolExecutor的方法
    }

    // Lock methods
    //
    // The value 0 represents the unlocked state. 0代表“没被锁定”状态
    // The value 1 represents the locked state. 1代表“锁定”状态

    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    /**
     * 尝试获取锁
     * 重写AQS的tryAcquire(),AQS本来就是让子类来实现的
     */
    protected boolean tryAcquire(int unused) {
        //尝试一次将state从0设置为1,即“锁定”状态,但由于每次都是state 0->1,而不是+1,那么说明不可重入
        //且state==-1时也不会获取到锁
        if (compareAndSetState(0, 1)) {
            setExclusiveOwnerThread(Thread.currentThread());//设置exclusiveOwnerThread=当前线程
            return true;
        }
        return false;
    }

    /**
     * 尝试释放锁
     * 不是state-1,而是置为0
     */
    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }

    /**
     * 中断(如果运行)
     * shutdownNow时会循环对worker线程执行
     * 且不需要获取worker锁,即使在worker运行时也可以中断
     */
    void interruptIfStarted() {
        Thread t;
        //如果state>=0、t!=null、且t没有被中断
        //new Worker()时state==-1,说明不能中断
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}

Worker类
Worker类本身既实现了Runnable,又继承了AbstractQueuedSynchronizer(以下简称AQS),所以其既是一个可执行的任务,又可以达到锁的效果
new Worker()

  • 1、将AQS的state置为-1,在runWoker()前不允许中断
  • 2、待执行的任务会以参数传入,并赋予firstTask
  • 3、用Worker这个Runnable创建Thread

之所以Worker自己实现Runnable,并创建Thread,在firstTask外包一层,是因为要通过Worker控制中断,而firstTask这个工作任务只是负责执行业务
Worker控制中断主要有以下几方面:

  • 1、初始AQS状态为-1,此时不允许中断interrupt(),只有在worker线程启动了,执行了runWoker(),将state置为0,才能中断
    不允许中断体现在:
    • A、shutdown()线程池时,会对每个worker tryLock()上锁,而Worker类这个AQS的tryAcquire()方法是固定将state从0->1,故初始状态state==-1时tryLock()失败,没发interrupt()
    • B、shutdownNow()线程池时,不用tryLock()上锁,但调用worker.interruptIfStarted()终止worker,interruptIfStarted()也有state>0才能interrupt的逻辑
  • 2、为了防止某种情况下,在运行中的worker被中断,runWorker()每次运行任务时都会lock()上锁,而shutdown()这类可能会终止worker的操作需要先获取worker的锁,这样就防止了中断正在运行的线程

Worker实现的AQS为不可重入锁,为了是在获得worker锁的情况下再进入其它一些需要加锁的方法

Worker和Task的区别:
Worker是线程池中的线程,而Task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,后面会看到这部分的实现。

4、runWorker() -- 执行任务

/**
 * Main worker run loop.  Repeatedly gets tasks from queue and
 * executes them, while coping with a number of issues:
 * 重复的从队列中获取任务并执行,同时应对一些问题:
 *
 * 1. We may start out with an initial task, in which case we
 * don't need to get the first one. Otherwise, as long as pool is
 * running, we get tasks from getTask. If it returns null then the
 * worker exits due to changed pool state or configuration
 * parameters.  Other exits result from exception throws in
 * external code, in which case completedAbruptly holds, which
 * usually leads processWorkerExit to replace this thread.
 * 我们可能使用一个初始化任务开始,即firstTask为null
 * 然后只要线程池在运行,我们就从getTask()获取任务
 * 如果getTask()返回null,则worker由于改变了线程池状态或参数配置而退出
 * 其它退出因为外部代码抛异常了,这会使得completedAbruptly为true,这会导致在processWorkerExit()方法中替换当前线程
 *
 * 2. Before running any task, the lock is acquired to prevent
 * other pool interrupts while the task is executing, and then we
 * ensure that unless pool is stopping, this thread does not have
 * its interrupt set.
 * 在任何任务执行之前,都需要对worker加锁去防止在任务运行时,其它的线程池中断操作
 * clearInterruptsForTaskRun保证除非线程池正在stoping,线程不会被设置中断标示
 *
 * 3. Each task run is preceded by a call to beforeExecute, which
 * might throw an exception, in which case we cause thread to die
 * (breaking loop with completedAbruptly true) without processing
 * the task.
 * 每个任务执行前会调用beforeExecute(),其中可能抛出一个异常,这种情况下会导致线程die(跳出循环,且completedAbruptly==true),没有执行任务
 * 因为beforeExecute()的异常没有cache住,会上抛,跳出循环
 *
 * 4. Assuming beforeExecute completes normally, we run the task,
 * gathering any of its thrown exceptions to send to afterExecute.
 * We separately handle RuntimeException, Error (both of which the
 * specs guarantee that we trap) and arbitrary Throwables.
 * Because we cannot rethrow Throwables within Runnable.run, we
 * wrap them within Errors on the way out (to the thread's
 * UncaughtExceptionHandler).  Any thrown exception also
 * conservatively causes thread to die.
 * 假定beforeExecute()正常完成,我们执行任务
 * 汇总任何抛出的异常并发送给afterExecute(task, thrown)
 * 因为我们不能在Runnable.run()方法中重新上抛Throwables,我们将Throwables包装到Errors上抛(会到线程的UncaughtExceptionHandler去处理)
 * 任何上抛的异常都会导致线程die
 *
 * 5. After task.run completes, we call afterExecute, which may
 * also throw an exception, which will also cause thread to
 * die. According to JLS Sec 14.20, this exception is the one that
 * will be in effect even if task.run throws.
 * 任务执行结束后,调用afterExecute(),也可能抛异常,也会导致线程die
 * 根据JLS Sec 14.20,这个异常(finally中的异常)会生效
 *
 * The net effect of the exception mechanics is that afterExecute
 * and the thread's UncaughtExceptionHandler have as accurate
 * information as we can provide about any problems encountered by
 * user code.
 *
 * @param w the worker
 */
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    // new Worker()是state==-1,此处是调用Worker类的tryRelease()方法,将state置为0, 而interruptIfStarted()中只有state>=0才允许调用中断

    boolean completedAbruptly = true;//是否“突然完成”,如果是由于异常导致的进入finally,那么completedAbruptly==true就是突然完成的
    try {
        /**
         * 如果task不为null,或者从阻塞队列中getTask()不为null
         */
        while (task != null || (task = getTask()) != null) {
            w.lock();//上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的worker
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            /**
             * clearInterruptsForTaskRun操作
             * 确保只有在线程stoping时,才会被设置中断标示,否则清除中断标示
             * 1、如果线程池状态>=stop,且当前线程没有设置中断状态,wt.interrupt()
             * 2、如果一开始判断线程池状态<stop,但Thread.interrupted()为true,即线程已经被中断,又清除了中断标示,再次判断线程池状态是否>=stop
             *   是,再次设置中断标示,wt.interrupt()
             *   否,不做操作,清除中断标示后进行后续步骤
             */
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();//当前线程调用interrupt()中断
            try {
                //执行前(子类实现)
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    //执行后(子类实现)
                    afterExecute(task, thrown);//这里就考验catch和finally的执行顺序了,因为要以thrown为参
                }
            } finally {
                task = null;//task置为null
                w.completedTasks++;//完成任务数+1
                w.unlock();//解锁
            }
        }
        completedAbruptly = false;
    } finally {
        //处理worker的退出
        processWorkerExit(w, completedAbruptly);
    }
}

runWorker(Worker w)
执行流程:

  • 1、Worker线程启动后,通过Worker类的run()方法调用runWorker(this)
  • 2、执行任务之前,首先worker.unlock(),将AQS的state置为0,允许中断当前worker线程
  • 3、开始执行firstTask,调用task.run(),在执行任务前会上锁wroker.lock(),在执行完任务后会解锁,为了防止在任务运行时被线程池一些中断操作中断
  • 4、在任务执行前后,可以根据业务场景自定义beforeExecute() 和 afterExecute()方法
  • 5、无论在beforeExecute()、task.run()、afterExecute()发生异常上抛,都会导致worker线程终止,进入processWorkerExit()处理worker退出的流程
  • 6、如正常执行完当前task后,会通过getTask()从阻塞队列中获取新任务,当队列中没有任务,且获取任务超时,那么当前worker也会进入退出流程

使用线程池的注意点

  • 避免任务堆积
  • 避免线程数过度增加
  • 排查线程泄露

参考:
https://www.cnblogs.com/zhujiabin/p/5404771.html

https://www.cnblogs.com/ConstXiong/p/11686330.html

https://www.cnblogs.com/gxlaqj/p/11719681.html

https://www.jb51.net/article/170826.htm

https://www.cnblogs.com/trust-freedom/p/6681948.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容