下图来源:https://github.com/hoya012/deep_learning_object_detection

以下内容来源:https://github.com/shanglianlm0525/PyTorch-Networks
典型网络
典型的卷积神经网络包括:AlexNet、VGG、ResNet; InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet。
AlexNet: ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012
VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014
ResNet: Deep Residual Learning for Image Recognition, He-Kaiming, 2015
InceptionV1: Going deeper with convolutions , Christian Szegedy , 2014
InceptionV2 and InceptionV3: Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015
InceptionV4 and Inception-ResNet: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016
DenseNet: Densely Connected Convolutional Networks, 2017
ResNeXt: Aggregated Residual Transformations for Deep Neural Networks,2017
轻量级网络
轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet。
MobileNets: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV3:Searching for MobileNetV3
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and < 0.5MB Model Size
Xception: Deep Learning with Depthwise Separable Convolutions
MixNet: Mixed Depthwise Convolutional Kernels
目标检测网络
目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox。
- 
SSD: Single Shot MultiBox Detector,2016
 - 
YOLO:You Only Look Once: Unified, Real-Time Object Detection, 2016
 - 
YOLOv2: Better, Faster, Stronger,2017
 - 
YOLOv3: An Incremental Improvement, 2018
 - 
FCOS: Fully Convolutional One-Stage Object Detection, 2019
 - 
FPN:Feature Pyramid Networks for Object Detection, 2017
 - 
RetinaNet:Focal Loss For Dense Objective Detection
 - 
Objects as Points: Objects as Points,2019
 - 
FSAF: Feature Selective Anchor-Free Module for Single-Shot Object Detection, 2019
 - 
CenterNet: Keypoint Triplets for Object Detection, 2019
 - 
FoveaBox: Beyond Anchor-based Object Detector, 2019
 
语义分割网络
语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet。
- 
FCN: Fully Convolutional Networks for Semantic Segmentation
 - 
Fast-SCNN: Fast Semantic Segmentation Network
 - 
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation
 - 
LRNNet: A Light-Weighted Network with Efficient Reduced Non-Local Operation for Real-Time Semantic Segmentation
 - 
FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving (2019)
 
实例分割网络
实例分割网络包括:PolarMask。
PolarMask: Single Shot Instance Segmentation with Polar Representation ,2019
人脸检测和识别网络
人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。
- 
FaceBoxes: A CPU Real-time Face Detector with High Accuracy,2018
 - 
LFFD: A Light and Fast Face Detector for Edge Devices,2019
 
人体姿态识别网络
人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。
StackedHG: Stacked Hourglass Networks for Human Pose Estimation ,2016
Simple Baselines:Simple Baselines for Human Pose Estimation and Tracking
LPN: Simple and Lightweight Human Pose Estimation
注意力机制网络
注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。
- 
SE Net:Squeeze-and-Excitation Networks,2017
 - 
scSE:Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, 2018
 
- 
NL Net:Non-Local neural networks,2018
 
- 
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, 2019
 
- 
CBAM: Convolutional Block Attention Module, 2018
 
人像分割网络
人像分割网络包括:SINet。
- 
SINet:Extreme Lightweight Portrait Segmentation Networks