4.Solving Constraint Satisfaction Problems(2)

Summary of solutions

1.Pure backtracking
— If the current partial assignment is consistent
— Choose a variable, assign each value from its domain in turn
— Search the resulting sub-tree
2.Forward checking
— Prune values from neighbor variables if they are not supported by the assigned one

3.Arc consistency
— Prune similarly for all pairs of values related by a constraint

Constraint learning

♦ Learned constraints may be added to the network or kept separately
♦ A separate store of nogoods is usual, as they are usually large
— May add binary ones to the network and store the rest
— Data structures matter: indexing for rapid inference is important
♦ Every branch may add another nogood, so there are too many of them
— Storage requires exponential space
♦ Hence common to have a strategy for forgetting them
— e.g. let the longest ones lapse after a while
— or just keep the “tail” and discard when backtracking leaves the region
where it applies
♦ Constraint learning useful for CSP solvers; essential for SAT solvers

Constraint graphs

One of Graph Constraint

· vertices are decision variables
· edges are constraints

  1. Graph contains information about the structure of the problem.
  2. The dual graph: the vertices are the constraints and an edge between two constraints means they share a variable, gives yet another view.
  3. The bipartite graph: variable nodes and constraint nodes.
  4. the constraint graph only shows which decision variables are connected. It is not affected by whether the problem has solutions or not.

Tree-like constraint graphs

Example
  1. Choose a vertex to be the root of the tree
  2. Start assigning values at the root
  3. Don’t assign a value to a variable before its parent in the tree
  4. Do forward checking at each step

Symmetry

Value symmetry and variable symmetry are frequently present in CSPs

Example:
Suppose we have a pigeonhole problem: show that it’s impossible to fit 10 pigeons in 9 pigeonholes (without overcrowding)

Answer:
9! backtracks, even with arc consistency; no solution.
But one pigeon looks just like another (to a CSP solver), and one hole looks just like another as well.
A good symmetry-breaker is ∀x∀y((x < y) → (hole(x) < hole(y))). —would be true of 1 solution if there were just enough holes.
Therefore, 9! branches reduced to 1.

The bad part: if a problem has lots of symmetries, we can waste huge amounts of time searching symmetric (and equally empty) sub-spaces, or generating solutions that tell us nothing really new.

The good part: if we explore one of these sub-spaces, we know we can prune all of the others without losing anything essential

How to use: Note that if solutions are symmetric, partial assignments have (at least) the same symmetries, so early pruning may be possible.

The usual method for removing symmetric sub-problems is to add symmetry-breaking constraints

Tightening CSPs by learning from mistakes

if we found (v1 : b, v2 : r, v3 : b) was no good, remember that combination (v1 : b, v2 : r, v3 : b) as a disallowed triple of a (3-ary) constraint.

Never repeat a mistake: don’t backtrack twice for the same reason.

Two common ways of defining “better” or “worse” solutions:

  1. via an objective function: a quantity to me minimized (or maximized)
  2. via soft constraints: can be violated, but as little as possible
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容