python爬虫框架scrapy批量爬取京东评论信息并保存在本地

项目环境:
pycharm
windows
python3.7

新建项目

在想要创建的目录下打开命令行

创建命令:scrapy startproject 项目名
接着创建一个spider:
cd 项目名
scrapy genspider 爬虫名 "域名"

在项目下新建一个python文件,运行此文件即可运行爬虫项目,不需要再去命令行了

from scrapy import cmdline
cmdline.execute('scrapy crawl 爬虫名'.split())

使用以上命令创建的文件目录如下:(我爬取的是京东手机商品信息)

image.png

这里解释各个文件所起的作用
scrapy.cfg:项目的总配置文件,通常无须修改。
spider_JDComments:项目的 Python 模块,程序将从此处导入 Python 代码。
items.py:用于定义项目用到的 Item 类。Item 类就是一个 DTO(数据传输对象),通常就是定义 N 个属性,该类需要由开发者来定义。
pipelines.py:项目的管道文件,它负责处理爬取到的信息。该文件需要由开发者编写。
settings.py:项目的配置文件,在该文件中进行项目相关配置。
JD_spider:在该目录下存放项目所需的蜘蛛,蜘蛛负责抓取项目感兴趣的信息。

接下来开始上代码,代码中会有详细注释(#后的英文为scrapy框架自动生成)

items ,这里是创建想要爬取的字段,这里只是命名,操作在JD_spider中

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy

class SpiderJdcommentsItem(scrapy.Item):
    # define the fields for your item here like:
    comment = scrapy.Field()    #评论评论
    star = scrapy.Field()   #评论星级

编写爬虫解析文件

# -*- coding: utf-8 -*-
import scrapy
import re
import json
from ..items import SpiderJdcommentsItem    #这里注意,引用SpiderJdcommentsItem时用spider_JDComments.spider_JDComments.SpiderJdcommentsItem会报错

class JdSpiderSpider(scrapy.Spider):
    name = 'JD_spider'  #爬虫名
    # allowed_domains = ['list.jd.com']     #允许在此域名内爬取
    start_urls = ['https://list.jd.com/list.html?cat=9987,653,655&page=1&sort=sort_commentcount_desc&trans=1&JL=6_0_0#J_main']  #起始爬取的url地址

    def parse(self, response):
        #爬取每个手机链接
        phone_url_list = response.xpath("//*[@id='plist']/ul/li")   #xpath解析获取手机链接列表
        for temp in phone_url_list:
            temp_url = "https:" + temp.xpath("./div/div[4]/a/@href").get()    #获取每个手机链接,这里的xpath是接着phone_url_list的写的,可以看到xpath前有个"."
            yield scrapy.Request(url=temp_url, callback=self.get_commenturl)  #将手机链接传给处理手机详情页的函数(在那里找到评论真实链接)

        #因为scrapy是异步爬取的,也就是说他有可能会先爬取页数靠后的手机信息,而页数靠后的手机信息评论少,所以我只让他爬前4页,每页60*10*80,四页也有一万多条,够用了
        for i in range(2,5):
            next_link = "https://list.jd.com/list.html?cat=9987,653,655&page=%s&sort=sort_commentcount_desc&trans=1&JL=6_0_0#J_main" % i
            yield scrapy.Request(next_link, callback=self.parse)

        # #获取下一页链接
        # next_link = response.xpath("//span[@class='p-num']//a[@class='pn-next']/@href").getall()
        # if next_link:
        #     next_link = next_link[0]
        #     yield scrapy.Request("https://list.jd.com/" + next_link, callback=self.parse)

    def get_commenturl(self, response):
        pattern = re.compile('\d+')  # 正则表达式匹配链接中的数字串,下面构造评论的url时会用到
        number = pattern.findall(response.url)[0]

        for i in range(60):  # 获取每个手机的50页评论,因为京东只显示100页评论(虽然看着有10多万条)
            #好评信息,链接中score=3,中评2,差评1
            comment_url = "https://club.jd.com/comment/productPageComments.action?&productId=%s&score=2&sortType=5&page=%s&pageSize=10&isShadowSku=0&rid=0&fold=1" % (number, i)

            yield scrapy.Request(url=comment_url, callback=self.detail)

    def detail(self, response):
        data = json.loads(response.body.decode(response.encoding))  #response.body获得的是byte类型
                                                                    #scrapy中response.body 与 response.text区别:https://www.cnblogs.com/themost/p/8471953.html
                                                                    #对response的参数了解链接:https://blog.csdn.net/l1336037686/article/details/78536694
        if(data['comments']):   #判断评论信息是否存在,有的手机个别评论页数没有评论信息
            jdcomment_item = SpiderJdcommentsItem()  # 保存评论和星级数据所用
            for temp in data['comments']:
                if (temp['content'] and temp['score']):
                    jdcomment_item['comment'] = temp['content']
                    jdcomment_item['score'] = temp['score']
                    yield jdcomment_item



附上对response的参数了解链接:https://blog.csdn.net/l1336037686/article/details/78536694
scrapy中response.body 与 response.text区别:https://www.cnblogs.com/themost/p/8471953.html

设置代理,以免被封ip,在middlewares.py最下面添加如下代码(通用,不用改)

class my_useragent(object):
    def process_request(self, request, spider):
        USER_AGENT_LIST = [
            'MSIE (MSIE 6.0; X11; Linux; i686) Opera 7.23',
            'Opera/9.20 (Macintosh; Intel Mac OS X; U; en)',
            'Opera/9.0 (Macintosh; PPC Mac OS X; U; en)',
            'iTunes/9.0.3 (Macintosh; U; Intel Mac OS X 10_6_2; en-ca)',
            'Mozilla/4.76 [en_jp] (X11; U; SunOS 5.8 sun4u)',
            'iTunes/4.2 (Macintosh; U; PPC Mac OS X 10.2)',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:5.0) Gecko/20100101 Firefox/5.0',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:9.0) Gecko/20100101 Firefox/9.0',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0) Gecko/20120813 Firefox/16.0',
            'Mozilla/4.77 [en] (X11; I; IRIX;64 6.5 IP30)',
            'Mozilla/4.8 [en] (X11; U; SunOS; 5.7 sun4u)'
        ]
        agent = random.choice(USER_AGENT_LIST)
        request.headers['User_Agent'] = agent

settings.py设置(需要改的地方后面附上了注释)

# -*- coding: utf-8 -*-

# Scrapy settings for spider_JDComments project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'spider_JDComments'

SPIDER_MODULES = ['spider_JDComments.spiders']
NEWSPIDER_MODULE = 'spider_JDComments.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36' #代理

# Obey robots.txt rules
ROBOTSTXT_OBEY = False  #是否遵守爬虫协议

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 0.5 #数字越大,爬的越慢
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'spider_JDComments.middlewares.SpiderJdcommentsSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = { #开启代理
   'spider_JDComments.middlewares.my_useragent': 543,
}


# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {   #开启自己定义的popeline
   'spider_JDComments.pipelines.SpiderJdcommentsPipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

保存文件,若果不需要保存在数据库中,则不需开启上一步settings中自己定义的pipeline,也不需下一步中更改pipelines.py文件,可按如下方式保存数据

进入项目文件夹下打开命令行:scrapy crawl 爬虫名 -o test.csv(存储的文件名)

保存数据到mysql中(在pipelines.py中编写)

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql

class SpiderJdcommentsPipeline(object):
    def __init__(self):     #参看文章:https://blog.csdn.net/loner_fang/article/details/81056191
        self.conn = pymysql.connect('127.0.0.1', 'root', '123456', 'jd_spider', charset='utf8', use_unicode=True)   #从前到后本地ip,用户名,密码,数据库中table名,后两项保证编码正确
        self.cursor = self.conn.cursor()    #创建游标
    def process_item(self, item, spider):
        insert_sql = """insert into jd(score, comment) VALUES (%s, %s)"""   #插入数据语句
        self.cursor.execute(insert_sql, (item['score'], item['comment']))   #插入操作
        self.conn.commit()  #提交,不进行提交无法保存到数据库

    def close_spider(self, spider):

        # 关闭游标和连接
        self.cursor.close()
        self.conn.close()

接下来运行项目就可以实现向mysql中存取数据

最后附上一些操作mysql遇到的问题(使用mysql workbench操作)

看表中信息:

image.png

导出表和清空表:(表导出为csv格式后不规整,需再操作excell,附上链接:https://www.cnblogs.com/zsgyx/p/10452734.html
image.png

mysql表中一页只有1000条数据,大概在框框位置会有下一页按钮,叫:fetch next frame of records


image.png

mysql常见数据类型:https://blog.csdn.net/qq_42338771/article/details/89880360

导出数据到scv后,所有列的数据是在同一列的,如下:

image.png

选择分列的符号:


image.png

实现分列:


image.png

mysql导出数据时,原本的字符串中有换行的,导出的excell表中会分别存为一行,原因是导出时将\r\n解析了,解决方法:
用命令删除数据库特定表中的\r\n
UPDATE jd_spider.jd_negative SET comment = REPLACE( REPLACE( comment , CHAR( 10 ) , '' ) , CHAR( 13 ) , '' ) ;
如果执行这条语句报错,Error Code: 1175. You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column To disable safe mode, toggle the option in Preferences -> SQL Editor and reconnect.
使用命令改变数据库模式即可解决:
SET SQL_SAFE_UPDATES = 0

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容