1、集群分片模式
如果 redis 只用复制功能做主从,那么当数据量巨大的情况下,单机情况下可能已经承受不下一份数据,更不用说是主从都要各自保存一份完整的数据。在这种情况下,数据分片是一个非常好的解决办法。
redis 的 custer 正是用于解决该问题。它主要提供两个功能:
1、自动对数据分片,落到各个节点上
2、即使集群部分节点失效或者连接不上,依然可以继续处理命令
对于第二点,它的功能有点类似于 sentienl 的故障转移,在这里不细说。下面详细了解下 redis 的槽位分片原理,在此之前,先了解下分布式简单哈希算法和一致性哈希算法,以帮助理解槽位的作用。
2、简单哈希算法
假设有三台机,数据落在哪台机的算法为:
c = Hash(key) % 3
例如 key A 的哈希值为4,4 % 3 = 1,则落在第二台机。Key ABC 哈希值为11,11 % 3 = 2,则落在第三台机上。
利用这样的算法,假设现在数据量太大了,需要增加一台机器。A 原本落在第二台上,现在根据算法4 % 4 = 0,落到了第一台机器上了,但是第一台机器上根本没有 A 的值。这样的算法会导致增加机器或减少机器的时候,引起大量的缓存穿透,造成雪崩。
3、一致性哈希算法
在1997年,麻省理工学院的 Karger 等人提出了一致性哈希算法,为的就是解决分布式缓存的问题。
在一致性哈希算法中,整个哈希空间是一个虚拟圆环。
假设有四个节点 Node A、B、C、D,经过 ip 地址的哈希计算,它们的位置如下:
有4个存储对象 Object A、B、C、D,经过对 Key 的哈希计算后,它们的位置如下:
对于各个 Object,它所真正的存储位置是按顺时针找到的第一个存储节点。例如 Object A 顺时针找到的第一个节点是 Node A,所以 Node A 负责存储 Object A,Object B 存储在 Node B。
一致性哈希算法大概如此,那么它的容错性和扩展性如何呢?
假设 Node C 节点挂掉了,Object C 的存储丢失,那么它顺时针找到的最新节点是 Node D。也就是说 Node C 挂掉了,受影响仅仅包括 Node B 到 Node C 区间的数据,并且这些数据会转移到 Node D 进行存储。
同理,假设现在数据量大了,需要增加一台节点 Node X。Node X 的位置在 Node B 到 Node C 直接,那么受到影响的仅仅是 Node B 到 Node X 间的数据,它们要重新落到 Node X 上。
所以一致性哈希算法对于容错性和扩展性有非常好的支持。但一致性哈希算法也有一个严重的问题,就是数据倾斜。
如果在分片的集群中,节点太少,并且分布不均,一致性哈希算法就会出现部分节点数据太多,部分节点数据太少。也就是说无法控制节点存储数据的分配。如下图,大部分数据都在 A 上了,B 的数据比较少。
4、哈希槽
redis 集群(cluster)并没有选用上面一致性哈希,而是采用了哈希槽(slot)的这种概念。主要的原因就是上面所说的,一致性哈希算法对于数据分布、节点位置的控制并不是很友好。
首先哈希槽其实是两个概念,第一个是哈希算法。redis cluster 的 hash 算法不是简单的 hash(),而是 crc16 算法,一种校验算法。另外一个就是槽位的概念,空间分配的规则。其实哈希槽的本质和一致性哈希算法非常相似,不同点就是对于哈希空间的定义。一致性哈希的空间是一个圆环,节点分布是基于圆环的,无法很好的控制数据分布。而 redis cluster 的槽位空间是自定义分配的,类似于 windows 盘分区的概念。这种分区是可以自定义大小,自定义位置的。
redis cluster 包含了16384个哈希槽,每个 key 通过计算后都会落在具体一个槽位上,而这个槽位是属于哪个存储节点的,则由用户自己定义分配。例如机器硬盘小的,可以分配少一点槽位,硬盘大的可以分配多一点。如果节点硬盘都差不多则可以平均分配。所以哈希槽这种概念很好地解决了一致性哈希的弊端。
另外在容错性和扩展性上,表象与一致性哈希一样,都是对受影响的数据进行转移。而哈希槽本质上是对槽位的转移,把故障节点负责的槽位转移到其他正常的节点上。扩展节点也是一样,把其他节点上的槽位转移到新的节点上。
但一定要注意的是,对于槽位的转移和分派,redis 集群是不会自动进行的,而是需要人工配置的。所以 redis 集群的高可用是依赖于节点的主从复制与主从间的自动故障转移。
转自:https://zackku.com/redis-cluster/