基于云模型的协同过滤推荐算法代码实现

基于云模型的协同过滤推荐算法代码实现

一、云模型介绍

针对传统推荐系统数据稀疏、相似性计算方法导致共同评分用户少的问题,提出利用云模型概念与定量数值转换的优势,研究云模型(百度百科查看概念)的个性化推荐改进算法。

云模型所表达的概念的整体特性可以用云的数字特征来反映,云用期望、熵、超熵这3个数字特征来整体表征一个概念。

二、推荐实现思路     

1、构建用户-电影评分矩阵;

2、定义用户的电影评分频度向量(用户对所有电影的1-5分值打分次数),用户评分频度向量不关心具体项目的评分,而是关心用户对项目集的评分特征;

3、利用逆向云算法,根据用户的评分频度向量计算出云的三个参数表示的用户评分偏好,称为用户评分特征向量,记为[if !msEquation][if !vml]

[endif][endif]其中,期望Ex反映了用户对所有项目的平均满意度,为偏好水平;熵En反映了用户评分的集中程度,为评分偏好的离散度;He为超熵的稳定度。

4、计算两个云之间的相似度。两个用户的评分特征向量的余弦夹角为两个云之间的相似度,即两个用户之间的相似度;

5、得到最近邻居;

6、得到推荐结果。

三、基于云模型的协同过滤推荐算法的优势

1、考虑了整体信息,避免了基于向量的相似度计算方式严格匹配对象属性的不足;

2、充分利用了用户评分数据的统计信息;

3、避免了传统相似度比较方法中侧重利用相关性而非相似性的弱点;

4、使得那些虽然缺少共同评分项目,但有整体共同偏好的用户变得可比较;

5、更加适合用户评分数据稀疏的现实情况。

二、推荐实现过程     

1、构建用户-电影评分矩阵,如下图:

2、定义云实体类,如下图:

3、定义用户的电影评分频度向量,如下图:

4、实例化云,如下图:

5、计算用户之间的相似度,如下图:

6、得到最近邻居,如下图:

7、得到推荐结果,如下图:


项目源代码:https://download.csdn.net/download/u011291472/11967865

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容