VGGNet

VGGNet网络结构:


VGGNe初步探索了卷积神经网络深度与其性能的关系,通过反复堆叠3x3的卷积层和2x2的池化层,VGGNet成功构建了16~19层得网络。
VGGNet的扩展性很强,迁移到其他图像数据上的泛化兴非常好,到目前为止,VGGNet依然经常被用来提取图像特征。
VGGNet共有5段卷积,每一段内都有2~3个卷积层,同时每段尾部都会连接一个最大池化层来缩小feature map尺寸。



A到E网络逐渐变深,但是参数量变化不大。CNNs中参数左右集中在全连接层;卷积层参数少,但是计算量大,主要是卷积层耗时。D和E就是VGGNet-16和VGGNet-19。

VGGNet网络特点和技术点:

卷积层只使用了3x3和1x1两种小卷积核,且常出现多个3x3卷积核串联堆叠的情况,这种设计非常实用:比如2个3x3卷积核串联堆叠,作用相当于1个5x5卷积核;3个3x3卷积核串联堆叠,作用相当于1个7x7卷积核。这样做有2个优点:①减少了卷积核的参数量(其实这个优点不是很突出)
②层数增加,使用的激活函数(如ReLU)次数变多,产生了更强的非线性变换(抽象能力),使得网络对特征的学习能力更强。

原论文作者对比各级网络总结出了以下介个观点:

①LRN层作用不大,却导致更多的内存消耗和计算时间。
②越深的网络效果越好。
③1x1卷积很有效,但是没有3x3卷积效果好,大一些的卷积核可以学习到更大的空间特征。

1x1卷积:

又称为网中网(Network In Network),它不考虑像素与像素之间的关系。其作用:
(1)通道数量的升维/降维,只改变feature map输出的channels,不改变它的宽度和高度,是一个性价比很高的聚合操作;实现降维和升维的操作其实就是channels间信息的线性组合变化。
(2)可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

NIN论文中解释1×1的卷积实现了多个feature map的结合,从而整合了不同通道间的信息。(个人认为这个作用并不是特点,因为其它大小的卷积核也可以实现)

多尺度训练Mutli-Scale:

训练采用多尺度训练,将原始图像缩放到不同尺寸S,然后再随机裁切成224 x 224的图片,并且对图片进行水平翻转和随机RGB色差调整,这样能增加很多数据量,对于防止模型过拟合有很不错的效果。
  初始对原始图片进行裁剪时,原始图片的最小边不宜过小,这样的话,裁剪到224 x 224的时候,就相当于几乎覆盖了整个图片,这样对原始图片进行不同的随机裁剪得到的图片就基本上没差别,就失去了增加数据集的意义,但同时也不宜过大,这样的话,裁剪到的图片只含有目标的一小部分,也不是很好。
  针对上述裁剪的问题,提出的两种解决办法:
(1) 固定最小边的尺寸为256;
(2) 随机从[256,512]的确定范围内进行抽样,这样原始图片尺寸不一,有利于训练,这个方法叫做尺度抖动(scale jittering),有利于训练集增强。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容