R绘图 | 一幅小提琴图的美化之旅

R绘图 | 一幅小提琴图的美化之旅

violin_beauty.jpg

五一假期,来点轻松点的知识!

整个新系列。目前的几个系列, #R实战生信分析为主, #跟着CNS学作图复现顶刊Figure为主,而本系列 #R绘图 则是学习不在文章中但同样很好看的图,致力于给同学们在数据可视化中提供新的思路和方法。

22

本期图片

distributions5.png

示例数据和代码领取

详见:https://mp.weixin.qq.com/s/-7mblXGdqK1mCp4VFKs33g
大家直接看原文吧 这图都挂了 我懒得再传了

绘制

# 加载包
library(tidyverse)
library(ggplot2)

# 示例数据准备
niwot_plant_exp <- read.csv("niwot_plant_exp.csv")
# Calculate species richness per plot per year
niwot_richness <- niwot_plant_exp %>% 
  group_by(plot_num, year) %>%
  mutate(richness = length(unique(USDA_Scientific_Name))) %>% 
  ungroup()
distributions1 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
    geom_violin()
distributions1

[图片上传失败...(image-b72ffa-1651483928349)]

图很丑,但这是对数据分布的有效观察。我们可以添加一些颜色,也可以添加我们的自定义主题。

theme_niwot <- function(){
  theme_bw() +
    theme(text = element_text(family = "Helvetica Light"),
          axis.text = element_text(size = 16), 
          axis.title = element_text(size = 18),
          axis.line.x = element_line(color="black"), 
          axis.line.y = element_line(color="black"),
          panel.border = element_blank(),
          panel.grid.major.x = element_blank(),                                          
          panel.grid.minor.x = element_blank(),
          panel.grid.minor.y = element_blank(),
          panel.grid.major.y = element_blank(),  
          plot.margin = unit(c(1, 1, 1, 1), units = , "cm"),
          plot.title = element_text(size = 18, vjust = 1, hjust = 0),
          legend.text = element_text(size = 12),          
          legend.title = element_blank(),                              
          legend.position = c(0.95, 0.15), 
          legend.key = element_blank(),
          legend.background = element_rect(color = "black", 
                                           fill = "transparent", 
                                           size = 2, linetype = "blank"))
}

distributions2 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  # alpha控制不透明度
  theme_niwot()

distributions2

[图片上传失败...(image-f39c4f-1651483928349)]

看起来好多了,但对于读者来说,要找出每个类别的平均值仍然很难。这样我们就可以用箱形图把小提琴覆盖起来。

distributions3 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  geom_boxplot(aes(colour = fert), width = 0.2) + # 添加箱线图图层
  theme_niwot()
distributions3

[图片上传失败...(image-8609a-1651483928349)]

虽然箱线图在图上添加了更多的信息,但我们仍然不知道数据点的确切位置,小提琴的平滑函数有时会隐藏给定变量的真实值。不用箱线图,我们可以加上实际数据点。

distributions4 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  geom_jitter(aes(colour = fert), position = position_jitter(0.1), # 添加散点
              alpha = 0.3) +
  theme_niwot()
distributions4

[图片上传失败...(image-889b00-1651483928349)]

可以看到,虽然能看到真实的数据,但当这些点放在小提琴上时,很难区分。这就到了雨云图发挥作用的时候,它结合了真实数据点和箱线图的分布。

# This code loads the function in the working environment
source("geom_flat_violin.R") 
distributions5 <- 
  ggplot(data = niwot_richness, 
         aes(x = reorder(fert, desc(richness)), y = richness, fill = fert)) +
  # 半小提琴
  geom_flat_violin(position = position_nudge(x = 0.2, y = 0), alpha = 0.8) +
  # 散点
  geom_point(aes(y = richness, color = fert), 
             position = position_jitter(width = 0.15), size = 1, alpha = 0.1) +
  # 箱线
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.8) +
  # \n 添加一个新行,在轴和轴标题之间创建一些空间
  
  labs(y = "Species richness\n", x = NULL) +
  # 删除图例
  guides(fill = FALSE, color = FALSE) +
  # 设置 y 轴范围
  scale_y_continuous(limits = c(0, 30)) +
  # 颜色
  scale_fill_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
  scale_colour_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
  theme_niwot()
distributions5

[图片上传失败...(image-3b8797-1651483928349)]

可以翻转x轴和y轴。

distributions6 <- 
    ggplot(data = niwot_richness, 
           aes(x = reorder(fert, desc(richness)), y = richness, fill = fert)) +
    geom_flat_violin(position = position_nudge(x = 0.2, y = 0), alpha = 0.8) +
    geom_point(aes(y = richness, color = fert), 
               position = position_jitter(width = 0.15), size = 1, alpha = 0.1) +
    geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.8) +
    labs(y = "\nSpecies richness", x = NULL) +
    guides(fill = FALSE, color = FALSE) +
    scale_y_continuous(limits = c(0, 30)) +
    scale_fill_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
    scale_colour_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
    coord_flip() +
    theme_niwot()

ggsave(distributions6, filename = "distributions6.png",
       height = 5, width = 5)

[图片上传失败...(image-7dc75d-1651483928349)]

美化之旅到此结束啦!

参考

往期内容

  1. (免费教程+代码领取)|跟着Cell学作图系列合集
  2. Q&A | 如何在论文中画出漂亮的插图?
  3. Front Immunol 复现 | 1. GEO数据下载及sva批次校正(PCA可视化)
  4. R绘图 | 气泡散点图+拟合曲线
  5. 跟着 Cell 学作图 | 桑葚图(ggalluvial)
  6. R绘图 | 对比条形图+连线

[图片上传失败...(image-9140e9-1651483928349)]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容