Python拉勾爬虫——以深圳地区数据分析师为例

拉勾因其结构化的数据比较多因此过去常常被爬,所以在其多次改版之下变得难爬。不过只要清楚它的原理,依然比较好爬。其机制主要就是AJAX异步加载JSON数据,所以至少在搜索页面里翻页url不会变化,而且数据也不会出现在源代码里。

数据解析

这是深圳地区的数据分析师页面,用Chrome检查打开。在XHR中可以看到一个以postionAjax.json开头的脚本,打开Preview看一下,可以看到:

可以发现这些数据与前端的数据一致,此时我们已经找到了数据入口,就可以开始爬了。

数据爬取

在Headers里可以查看请求方式:

Request Header:
Request URL:https://www.lagou.com/jobs/positionAjax.json?city=%E6%B7%B1%E5%9C%B3&needAddtionalResult=false
Request Method:POST
Status Code:200 OK
Remote Address:106.75.72.62:443

从Request Header中可以看到,是用POST提交表单方式查询的(所以如果你直接点开Request URL你会发现数据不对,因为没有提交表单数据)。

那么我们就可以在Python中构造请求头以及提交表单数据来访问:

import requests
import time
from sqlalchemy import create_engine
import pandas as pd
from random import choice
import json
import numpy

engine=create_engine(#这里填你自己数据库的参数#) # 连接数据库
dl = pd.read_sql("proxys",engine)

def get_proxy(dl):
    n = choice(range(1, len(dl.index)))
    proxy = {"http":"http://%s:%s" %(dl["ip"][n],dl["port"][n]),
             "https": "http://%s:%s" % (dl["ip"][n], dl["port"][n])}
    return(proxy)

def get_header():
    headers = {
        "User-Agent": ""Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)"",
        "Accept": "application/json, text/javascript, */*; q=0.01",
        "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",
        "Referer": "https://www.lagou.com/jobs/list_%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E5%B8%88?px=default&city=%E6%B7%B1%E5%9C%B3&district=%E5%8D%97%E5%B1%B1%E5%8C%BA",
        "X-Requested-With": "XMLHttpRequest",
        "Host": "www.lagou.com",
        "Connection":"keep-alive",
        "Cookie":"user_trace_token=20160214102121-0be42521e365477ba08bd330fd2c9c72; LGUID=20160214102122-a3b749ae-d2c1-11e5-8a48-525400f775ce; tencentSig=9579373568; pgv_pvi=3712577536; index_location_city=%E5%85%A8%E5%9B%BD; SEARCH_ID=c684c55390a84fe5bd7b62bf1754b900; JSESSIONID=8C779B1311176D4D6B74AF3CE40CE5F2; TG-TRACK-CODE=index_hotjob; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1485318435,1485338972,1485393674,1485423558; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1485423598; _ga=GA1.2.1996921784.1455416480; LGRID=20170126174002-691cb0a5-e3ab-11e6-bdc0-525400f775ce",
        "Origin": "https://www.lagou.com",
        "Upgrade-Insecure-Requests":"1",
        "X-Anit-Forge-Code": "0",
        "X-Anit-Forge-Token": "None",
        "Accept-Encoding": "gzip, deflate, br",
        "Accept-Language": "zh-CN,zh;q=0.8"
        }
    return(headers)

def get_form(i):
    data={"first":"false","pn":i,"kd":"数据分析师"}
    return(data)

districts = ["南山区","福田区","宝安区","龙岗区","龙华新区","罗湖区","盐田区","大鹏新区"]
pagenos = [22,10,1,4,1,2,1,1]
url_lists = ["https://www.lagou.com/jobs/positionAjax.json?px=default&city=深圳&district=%s&needAddtionalResult=false"%area for area in districts]

s = requests.Session()
s.keep_alive = False
s.adapters.DEFAULT_RETRIES = 10

def get_jobinfo(i,j): # i表区号,j表页数
    if i >= 8 or j > pagenos[i]:
        return("索引超标!")
    resp=s.post(url_lists[i], data=get_form(j), headers=get_header())
    resp.encoding="utf-8"
    max_num = len(json.loads(resp.text)["content"]["positionResult"]["result"])
    for k in range(max_num):
        try:
            json_data=json.loads(resp.text)["content"]["positionResult"]["result"][k]
            df = pd.DataFrame(dict(
                approve=json_data["approve"],
        #        businessZones=json_data["businessZones"],
                companyId=json_data["companyId"],
        #        companyLabelList=json_data["companyLabelList"],
                companyShortName=json_data["companyShortName"],
                companySize=json_data["companySize"],
                createTime=json_data["createTime"],
                education=json_data["education"],
                financeStage=json_data["financeStage"],
                firstType=json_data["firstType"],
                industryField=json_data["industryField"],
                jobNature=json_data["jobNature"],
                positionAdvantage=json_data["positionAdvantage"],
                positionId=json_data["positionId"],
                positionName=json_data["positionName"],
                salary=json_data["salary"],
                secondType=json_data["secondType"],
                workYear=json_data["workYear"],
                scrapy_time=time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))),index=[0])
            df.to_sql(con = engine, name = "job_info", if_exists = 'append', flavor = "mysql",index=False)
        except:
            print("第%d区,第%d页,第%d个出错了!"%(i,j,k))

以上这个函数就可以通过提交区和页数,返回当前页的职位数。

其实AJAX返回JSON数据的方式也有好处,数据都是规整的,不必花太多时间精力在数据清洗上。

至于职位详情的内容是写在源代码里的,这些用常规爬虫方法即可。

不过注意要加延时,拉勾的反爬虫措施还是比较严的,不加延时爬一小会儿就会被封IP。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容