1 、介绍
对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间
然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度进
而比较图像本身的相似程度。Opencv提供的比较方法有四种:
Correlation 相关性比较
Chi-Square 卡方比较
Intersection 十字交叉性
Bhattacharyya distance 巴氏距离
[图片上传中...(image.png-a4efb1-1573543181136-0)]
2 、应用
图像相似度比较
如果我们有两张图像,并且这两张图像的直方图一样,或者有极高的相似度,那么在一定程度上,我们可以认为这两幅图是一样的,这就是直方图比较的应用之一。
分析图像之间关系
两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。
3 、比较方法
相关性比较
卡方计算
十字计算
巴氏距离计算
4 、比较步骤
首先把图像从RGB色彩空间转换到HSV(色调(H),饱和度(S),明度(V)色彩空间cvtColor
计算图像的直方图,然后归一化到[0~1]之间,calcHist和normalize;
使用上述四种比较方法之一进行比较compareHist
5 、整体代码测试
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
compareHist(
InputArray h1, // 直方图数据,下同
InputArray H2,
int method// 比较方法,上述四种方法之一
)
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace std;
using namespace cv;
string convertToString(double d);
int main(int argc, char** argv) {
Mat base, test1, test2;
Mat hsvbase, hsvtest1, hsvtest2;
base = imread("D:\\pic/z1.jpg");
if (!base.data) {
printf("could not load image...\n");
return -1;
}
test1 = imread("D:\\pic/z2.jpg");
test2 = imread("D:\\pic/z3.jpg");
cvtColor(base, hsvbase, CV_BGR2HSV);
cvtColor(test1, hsvtest1, CV_BGR2HSV);
cvtColor(test2, hsvtest2, CV_BGR2HSV);
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = { 0, 180 };
float s_ranges[] = { 0, 256 };
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
int channels[] = { 0, 1 };
MatND hist_base;
MatND hist_test1;
MatND hist_test2;
calcHist(&hsvbase, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsvtest1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsvtest2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
double basebase = compareHist(hist_base, hist_base, CV_COMP_INTERSECT);
double basetest1 = compareHist(hist_base, hist_test1, CV_COMP_INTERSECT);
double basetest2 = compareHist(hist_base, hist_test2, CV_COMP_INTERSECT);
double tes1test2 = compareHist(hist_test1, hist_test2, CV_COMP_INTERSECT);
printf("test1 compare with test2 correlation value :%f", tes1test2);
Mat test12;
test2.copyTo(test12);
putText(base, convertToString(basebase), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test1, convertToString(basetest1), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test2, convertToString(basetest2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test12, convertToString(tes1test2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
namedWindow("base", CV_WINDOW_AUTOSIZE);
namedWindow("test1", CV_WINDOW_AUTOSIZE);
namedWindow("test2", CV_WINDOW_AUTOSIZE);
imshow("base", base);
imshow("test1", test1);
imshow("test2", test2);
imshow("test12", test12);
waitKey(0);
return 0;
}
string convertToString(double d) {
ostringstream os;
if (os << d)
return os.str();
return "invalid conversion";
}