caffe之数据层

前言:本文参考博客denny402
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。
层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。

今天我们就先介绍一下数据层.
数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。
数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。
所有的数据层的都具有的公用参数:先看示例

layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mean_file: "examples/cifar10/mean.binaryproto"
  }
  data_param {
    source: "examples/cifar10/cifar10_train_lmdb"
    batch_size: 100
    backend: LMDB
  }
}

name: 表示该层的名称,可随意取
type: 层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采用的LevelDB或LMDB数据,因此层类型设置为Data。

top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。

data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。

include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。
Transformations: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间

其它的数据预处理也在这个地方设置:

transform_param {
    scale: 0.00390625
    mean_file_size: "examples/cifar10/mean.binaryproto"
    # 用一个配置文件来进行均值操作
    mirror: 1  # 1表示开启镜像,0表示关闭,也可用ture和false来表示
    # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
    crop_size: 227
  }

后面的data_param部分,就是根据数据的来源不同,来进行不同的设置。
1、数据来自于数据库(如LevelDB和LMDB)
层类型(layer type):Data
必须设置的参数:
source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb
batch_size: 每次处理的数据个数,如64
可选的参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.
示例:

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

2、数据来自于内存
层类型:MemoryData
必须设置的参数:
batch_size:每一次处理的数据个数,比如2
channels:通道数
height:高度
width: 宽度
示例:

layer {
  top: "data"
  top: "label"
  name: "memory_data"
  type: "MemoryData"
  memory_data_param{
    batch_size: 2
    height: 100
    width: 100
    channels: 1
  }
  transform_param {
    scale: 0.0078125
    mean_file: "mean.proto"
    mirror: false
  }
}

3、数据来自于HDF5
层类型:HDF5Data
必须设置的参数:
source: 读取的文件名称
batch_size: 每一次处理的数据个数
示例:

layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  hdf5_data_param {
    source: "examples/hdf5_classification/data/train.txt"
    batch_size: 10
  }
}

4、数据来自于图片
层类型:ImageData
必须设置的参数:
source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)
batch_size: 每一次处理的数据个数,即图片数
可选参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
shuffle: 随机打乱顺序,默认值为false
new_height,new_width: 如果设置,则将图片进行resize
示例:

layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/_temp/file_list.txt"
    batch_size: 50
    new_height: 256
    new_width: 256
  }
}

5、数据来源于Windows
层类型:WindowData
必须设置的参数:
source: 一个文本文件的名字
batch_size: 每一次处理的数据个数,即图片数
示例:

layer {
  name: "data"
  type: "WindowData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  window_data_param {
    source: "examples/finetune_pascal_detection/window_file_2007_trainval.txt"
    batch_size: 128
    fg_threshold: 0.5
    bg_threshold: 0.5
    fg_fraction: 0.25
    context_pad: 16
    crop_mode: "warp"
  }
}

补充:
使用caffe生成数据,一般分为两种格式:Lmdb和Leveldb。
它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允许多种训练模型同时读取同一组数据集。因此lmdb取代了leveldb成为Caffe默认的数据集生成格式。
关于HDF5、图片、Windows中的source是一个txt文件,其中每一行存储的是每一个样本的路径和对应的标签。另外,关于HDF5 有两个类别,一个是HDF5Data表示输入,另一个类别是HDF5Output表示输出即写入文件至磁盘。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容