线程池面试题总结

为什么要使用线程池?

创建线程和销毁线程的花销是比较大的,这些时间有可能比处理业务的时间还要长。这样频繁的创建线程和销毁线程,再加上业务工作线程,消耗系统资源的时间,可能导致系统资源不足。(我们可以把创建和销毁的线程的过程去掉)

线程池有什么作用?

1、提高效率 创建好一定数量的线程放在池中,等需要使用的时候就从池中拿一个,这要比需要的时候创建一个线程对象要快的多。
2、方便管理 可以编写线程池管理代码对池中的线程同一进行管理,比如说启动时有该程序创建100个线程,每当有请求的时候,就分配一个线程去工作,如果刚好并发有101个请求,那多出的这一个请求可以排队等候,避免因无休止的创建线程导致系统崩溃。

说说几种常见的线程池及使用场景

1、newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

2、newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。

 public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

3、newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

4、newScheduledThreadPool
创建一个定长线程池,支持定时及周期性任务执行。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。 说明:Executors各个方法的弊端:
1)newFixedThreadPool和newSingleThreadExecutor:
  主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至OOM。
2)newCachedThreadPool和newScheduledThreadPool:
  主要问题是线程数最大数是Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至OOM。
Positive example 1:

 //org.apache.commons.lang3.concurrent.BasicThreadFactory
 ScheduledExecutorService executorService =
                new ScheduledThreadPoolExecutor(1, 
                        new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d").daemon(true).build()
                );

Positive example 2:

ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
                .setNameFormat("demo-pool-%d").build();

        //Common Thread Pool
        ExecutorService pool = new ThreadPoolExecutor(5, 200,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

        pool.execute(()-> System.out.println(Thread.currentThread().getName()));
        pool.shutdown();//gracefully shutdown

Positive example 3:

 <bean id="userThreadPool"
        class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
        <property name="corePoolSize" value="10" />
        <property name="maxPoolSize" value="100" />
        <property name="queueCapacity" value="2000" />

    <property name="threadFactory" value= threadFactory />
        <property name="rejectedExecutionHandler">
            <ref local="rejectedExecutionHandler" />
        </property>
    </bean>
    //in code
    userThreadPool.execute(thread);

个人在项目中用到的是第三种,业务需求,每天会有调度服务器会通过http协议请求

<bean id="xxDataThreadPool"
          class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
        <!-- 核心线程数 -->
        <property name="corePoolSize" value="50"/>
        <!-- 最大线程数 -->
        <property name="maxPoolSize" value="500"/>
        <!-- 队列最大长度 >=mainExecutor.maxSize -->
        <property name="queueCapacity" value="10"/>
        <!-- 线程池维护线程所允许的空闲时间 -->
        <property name="keepAliveSeconds" value="1"/>
        <!-- 线程池对拒绝任务(无线程可用)的处理策略 如果已经超过了限制丢弃消息,不进行处理 -->
        <property name="rejectedExecutionHandler">
            <bean class="java.util.concurrent.ThreadPoolExecutor$DiscardPolicy"/>
        </property>
    </bean>
@Controller
@RequestMapping("/windData")
public class WindDataListener {

    private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher");

    @Autowired
    private ThreadPoolTaskExecutor controlerThreadPool;

    @Autowired
    private ThreadPoolTaskExecutor windDataThreadPool;

    @Autowired
    private WindDataRuntimeService runtimeService;

    @Autowired
    private MaintainAlarmSender maintainAlarmSender;


    /**
     * 启动调度
     */
    @RequestMapping(value = "/receiveMsg", method = RequestMethod.GET)
    @ResponseBody
    public void receiveMsg() {

        final String paramLog = LogConst.BUSSINESS_NAME + LogConst.HTTP_API;
        logger.info("[{}][接收到调度消息]", paramLog);

        //定时调度,可能有多个http请求,把请求都放在controlerThreadPool里面
        controlerThreadPool.execute(new WindDataDispatcher(windDataThreadPool, runtimeService, maintainAlarmSender,
                MDC.getCopyOfContextMap()));

        logger.info("[{}][响应给调度系统]", paramLog);
    }
}
public class WindDataDispatcher implements Runnable {

    private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher");

    private ThreadPoolTaskExecutor taskThreadPool;

    private WindDataRuntimeService runtimeService;

    private MaintainAlarmSender maintainAlarmSender;

    private Map<Object, Object> mdcMap;

    public WindDataDispatcher(ThreadPoolTaskExecutor taskThreadPool, WindDataRuntimeService runtimeService, MaintainAlarmSender maintainAlarmSender, Map<Object, Object> mdcMap) {
        this.taskThreadPool = taskThreadPool;
        this.runtimeService = runtimeService;
        this.maintainAlarmSender = maintainAlarmSender;
        this.mdcMap = mdcMap;
    }


    @Override
    public void run() {
        if (null != mdcMap) {
            MDC.setContextMap(mdcMap);
        }
        final String paramLog = LogConst.BUSSINESS_NAME + LogConst.DISPATCHER;
        logger.info("[{}启动]", paramLog);
        taskThreadPool.execute(new WindDataExecutor(runtimeService, maintainAlarmSender, mdcMap));
        logger.info("[{}结束]", paramLog);
    }
}
public class WindDataExecutor implements Runnable {

    private final static ThLogger logger = ThLoggerFactory.getLogger("WindDataDispatcher");

    private WindDataRuntimeService runtimeService;

    private MaintainAlarmSender maintainAlarmSender;

    private Map<Object, Object> mdcMap;

    public WindDataExecutor(WindDataRuntimeService runtimeService, MaintainAlarmSender maintainAlarmSender, Map<Object, Object> mdcMap) {
        this.runtimeService = runtimeService;
        this.maintainAlarmSender = maintainAlarmSender;
        this.mdcMap = mdcMap;
    }

    @Override
    public void run() {
        if (null != mdcMap) {
            MDC.setContextMap(mdcMap);
        }
        final String paramLog = LogConst.BUSSINESS_NAME + LogConst.EXECUTOR;
        logger.info("[{}启动]", paramLog);
        try {
            runtimeService.groundWindData();
        } catch (Exception e) {
            logger.error("[{}异常]{}", new Object[]{paramLog, e});
            maintainAlarmSender.sendMail(MaintainAlarmSender.DEFAULT_MAIL_SUB, paramLog + "异常:" + e);
        }
        logger.info("[{}结束]", paramLog);
    }

}

线程池都有哪几种工作队列

1、ArrayBlockingQueue
是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
2、LinkedBlockingQueue
一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列
3、SynchronousQueue
一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
4、PriorityBlockingQueue
一个具有优先级的无限阻塞队列

线程池中的几种重要的参数及流程说明

 public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;

maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;

keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;

unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒

workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

ArrayBlockingQueue
LinkedBlockingQueue
SynchronousQueue
PriorityBlockingQueue

ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和SynchronousQueue。线程池的排队策略与BlockingQueue有关。

threadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程做些更有意义的事情,比如设置daemon和优先级等等

handler:表示当拒绝处理任务时的策略,有以下四种取值:

1、AbortPolicy:直接抛出异常。
2、CallerRunsPolicy:只用调用者所在线程来运行任务。
3、DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
4、DiscardPolicy:不处理,丢弃掉。
5、也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
   /**
     * A handler for rejected tasks that runs the rejected task
     * directly in the calling thread of the {@code execute} method,
     * unless the executor has been shut down, in which case the task
     * is discarded.
     */
    public static class CallerRunsPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code CallerRunsPolicy}.
         */
        public CallerRunsPolicy() { }

        /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }

    /**
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
    public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

    /**
     * A handler for rejected tasks that silently discards the
     * rejected task.
     */
    public static class DiscardPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardPolicy}.
         */
        public DiscardPolicy() { }

        /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

    /**
     * A handler for rejected tasks that discards the oldest unhandled
     * request and then retries {@code execute}, unless the executor
     * is shut down, in which case the task is discarded.
     */
    public static class DiscardOldestPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardOldestPolicy} for the given executor.
         */
        public DiscardOldestPolicy() { }

        /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

ThreadPoolExecutor 源码理解 https://www.cnblogs.com/dolphin0520/p/3932921.html

 public static void test(int size) {
        ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 20, 2, TimeUnit.SECONDS, new LinkedBlockingQueue<>(5));

        for (int i = 0; i < size; i++) {
            poolExecutor.execute(new DemoTask(i));


            Console.log("poolSize:" + poolExecutor.getPoolSize());
            Console.log("corePoolSize:" + poolExecutor.getCorePoolSize());
            Console.log("maximumPoolSize:" + poolExecutor.getMaximumPoolSize());
            Console.log("queue:" + poolExecutor.getQueue().size());
            Console.log("completedTaskCount:" + poolExecutor.getCompletedTaskCount());
            Console.log("largestPoolSize:" + poolExecutor.getLargestPoolSize());
            Console.log("keepAliveTime:" + poolExecutor.getKeepAliveTime(TimeUnit.SECONDS));

        }

        poolExecutor.shutdown();
    }

class DemoTask implements Runnable {

    private int taskNum;

    public DemoTask(int taskNum) {
        this.taskNum = taskNum;
    }

    @Override
    public void run() {
        Console.log(StringUtils.center("正在执行" + taskNum, 20, "="));

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        Console.log(StringUtils.center("执行完毕" + taskNum, 20, "="));
    }
}
=======正在执行0========
poolSize:1
corePoolSize:5
maximumPoolSize:20
queue:0
completedTaskCount:0
largestPoolSize:1
keepAliveTime:2
poolSize:2
corePoolSize:5
maximumPoolSize:20
queue:0
completedTaskCount:0
=======正在执行1========
largestPoolSize:2
keepAliveTime:2
poolSize:3
corePoolSize:5
maximumPoolSize:20
=======正在执行2========
queue:0
completedTaskCount:0
largestPoolSize:3
keepAliveTime:2
poolSize:4
corePoolSize:5
maximumPoolSize:20
queue:0
=======正在执行3========
completedTaskCount:0
largestPoolSize:4
keepAliveTime:2
poolSize:5
corePoolSize:5
=======正在执行4========
maximumPoolSize:20
queue:0
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:5
corePoolSize:5
maximumPoolSize:20
queue:1
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:5
corePoolSize:5
maximumPoolSize:20
queue:2
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:5
corePoolSize:5
maximumPoolSize:20
queue:3
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:5
corePoolSize:5
maximumPoolSize:20
queue:4
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:5
corePoolSize:5
maximumPoolSize:20
queue:5
completedTaskCount:0
largestPoolSize:5
keepAliveTime:2
poolSize:6
corePoolSize:5
maximumPoolSize:20
queue:5
completedTaskCount:0
largestPoolSize:6
keepAliveTime:2
poolSize:7
corePoolSize:5
maximumPoolSize:20
queue:5
completedTaskCount:0
largestPoolSize:7
keepAliveTime:2
=======正在执行11=======
poolSize:8
corePoolSize:5
maximumPoolSize:20
queue:5
completedTaskCount:0
=======正在执行12=======
=======正在执行10=======
largestPoolSize:8
keepAliveTime:2
poolSize:9
corePoolSize:5
=======正在执行13=======
maximumPoolSize:20
queue:5
completedTaskCount:0
largestPoolSize:9
keepAliveTime:2
poolSize:10
corePoolSize:5
maximumPoolSize:20
=======正在执行14=======
queue:5
completedTaskCount:0
largestPoolSize:10
keepAliveTime:2
poolSize:11
corePoolSize:5
maximumPoolSize:20
queue:5
=======正在执行15=======
completedTaskCount:0
largestPoolSize:11
keepAliveTime:2
poolSize:12
corePoolSize:5
maximumPoolSize:20
queue:5
completedTaskCount:0
=======正在执行16=======
largestPoolSize:12
keepAliveTime:2
poolSize:13
corePoolSize:5
maximumPoolSize:20
=======正在执行17=======
queue:5
completedTaskCount:0
largestPoolSize:13
keepAliveTime:2
poolSize:14
corePoolSize:5
maximumPoolSize:20
queue:5
=======正在执行18=======
completedTaskCount:0
largestPoolSize:14
keepAliveTime:2
poolSize:15
corePoolSize:5
maximumPoolSize:20
=======正在执行19=======
queue:5
completedTaskCount:0
largestPoolSize:15
keepAliveTime:2
=======执行完毕0========
=======正在执行5========
=======执行完毕1========
=======执行完毕2========
=======正在执行6========
=======正在执行7========
=======执行完毕4========
=======正在执行8========
=======执行完毕3========
=======正在执行9========
=======执行完毕13=======
=======执行完毕12=======
=======执行完毕10=======
=======执行完毕11=======
=======执行完毕15=======
=======执行完毕16=======
=======执行完毕14=======
=======执行完毕19=======
=======执行完毕18=======
=======执行完毕17=======
=======执行完毕5========
=======执行完毕7========
=======执行完毕6========
=======执行完毕8========
=======执行完毕9========

怎么理解无界队列和有界队列

有界队列
1.初始的poolSize < corePoolSize,提交的runnable任务,会直接做为new一个Thread的参数,立马执行 。
2.当提交的任务数超过了corePoolSize,会将当前的runable提交到一个block queue中。
3.有界队列满了之后,如果poolSize < maximumPoolsize时,会尝试new 一个Thread的进行救急处理,立马执行对应的runnable任务。
4.如果3中也无法处理了,就会走到第四步执行reject操作。
无界队列
与有界队列相比,除非系统资源耗尽,否则无界的任务队列不存在任务入队失败的情况。当有新的任务到来,系统的线程数小于corePoolSize时,则新建线程执行任务。当达到corePoolSize后,就不会继续增加,若后续仍有新的任务加入,而没有空闲的线程资源,则任务直接进入队列等待。若任务创建和处理的速度差异很大,无界队列会保持快速增长,直到耗尽系统内存。

当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略。

如何合理配置线程池的大小

https://www.zhihu.com/question/38128980

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容