本文中最重要的是学习到了如何进行
特征工程
的处理,其他内容还有
- 中位数填充缺失值
- 将数据中的字符串改成数值型
- 建模过程
导入相关库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set() # setting seaborn default for plots
train = pd.read_csv("/Users/peter/data-visualization/train.csv")
test = pd.read_csv("/Users/peter/data-visualization/test.csv")
查看数据信息及缺失值
train.head(3)
train.info() # age 字段非常缺失(714)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
test.head()
print(train.shape)
print(test.shape) # 少了预测的结果列
(891, 12)
(418, 11)
test.info() # age 字段缺失
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
PassengerId 418 non-null int64
Pclass 418 non-null int64
Name 418 non-null object
Sex 418 non-null object
Age 332 non-null float64
SibSp 418 non-null int64
Parch 418 non-null int64
Ticket 418 non-null object
Fare 417 non-null float64
Cabin 91 non-null object
Embarked 418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB
train.isnull().sum() # 查看缺失总数
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
Bar Chart for Categorical Features
- Pclass
- Sex
- SibSp ( # of siblings and spouse)
- Parch ( # of parents and children)
- Embarked
- Cabin
def bar_chart(feature):
# 定义两个列字段:survived, dead
survived = train[train['Survived'] == 1][feature].value_counts()
dead = train[train['Survived'] == 0][feature].value_counts()
df = pd.DataFrame([survived, dead])
df.index = ['Survived', 'Dead']
df.plot(kind='bar', stacked=True, figsize=(10,5))
bar_chart("Sex")
bar_chart('Pclass')
bar_chart('SibSp')
bar_chart('Parch')
# 先找出存活的所有数据,再找出属性P(1,2,3)中存活的人,然后统计属性P的分类人数
train[train['Survived']==1]['Pclass'].value_counts()
1 136
3 119
2 87
Name: Pclass, dtype: int64
train[train['Survived']==1]['Pclass']
1 1
2 3
3 1
8 3
9 2
..
875 3
879 1
880 2
887 1
889 1
Name: Pclass, Length: 342, dtype: int64
特征工程
Feature engineering is the process of using domain knowledge of the data
to create features (feature vectors) that make machine learning algorithms work.
特征工程的处理:如何将原始数据中的字符串数据转换成数值类型
Name
train_test_data = [train, test] # 将测试集和训练集合并
for dataset in train_test_data:
dataset["Title"] = dataset["Name"].str.extract('([A-Za-z]+)\.', expand=False) # str.extract 从正则表达式中返回第一个匹配中字符
train["Title"].value_counts() # 统计个数 train["Title"].value_counts()
Mr 517
Miss 182
Mrs 125
Master 40
Dr 7
Rev 6
Major 2
Col 2
Mlle 2
Lady 1
Capt 1
Sir 1
Countess 1
Mme 1
Don 1
Jonkheer 1
Ms 1
Name: Title, dtype: int64
test["Title"].value_counts() # 统计个数
Mr 240
Miss 78
Mrs 72
Master 21
Rev 2
Col 2
Dr 1
Ms 1
Dona 1
Name: Title, dtype: int64
Title map
- Mr : 0
- Miss : 1
- Mrs: 2
- Others: 3
title_mapping = {"Mr": 0, "Miss": 1, "Mrs": 2, "Master": 3, "Dr": 3,
"Rev": 3, "Col": 3, "Major": 3, "Mlle": 3,"Countess": 3,
"Ms": 3, "Lady": 3, "Jonkheer": 3, "Don": 3, "Dona" : 3,
"Mme": 3,"Capt": 3,"Sir": 3 }
dataset['Title'] # 取出每个名字的title_map部分
0 Mr
1 Mrs
2 Mr
3 Mr
4 Mrs
...
413 Mr
414 Dona
415 Mr
416 Mr
417 Master
Name: Title, Length: 418, dtype: object
for dataset in train_test_data:
# 将title_map和定义的title_mapping 进行对比
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset.head(3) # 最后面新增了一列:title
bar_chart("Title")
# 删除某个非必须属性
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.head()
Sex
- male:0
- female:1
sex_mapping = {"male": 0, "female": 1}
for dataset in train_test_data:
dataset['Sex'] = dataset['Sex'].map(sex_mapping) # 从dataset中取出Sex属性的值再和 map函数中定义的字典进行对比,找出符合要求的,再赋值给Sex 属性
bar_chart('Sex')
Age
Age字段中有很多缺失值,用中位数
进行填充
fillna函数后中位数进行填充
# 某个字段用中位数进行填充 fillna 函数
# transform之前要指定操作的列(Age),它只能对某个列进行操作,用于求最值、方差、中位数等
train['Age'].fillna(train.groupby('Title')['Age'].transform("median"), inplace=True)
test['Age'].fillna(train.groupby('Title')['Age'].transform("median"), inplace=True)
train.groupby("Title")["Age"].transform("median")
0 30.0
1 35.0
2 21.0
3 35.0
4 30.0
...
886 9.0
887 21.0
888 21.0
889 30.0
890 30.0
Name: Age, Length: 891, dtype: float64
facet = sns.FacetGrid(train, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, train['Age'].max()))
facet.add_legend()
plt.show()
facet = sns.FacetGrid(train, hue="Survived", aspect=4)
facet.map(sns.kdeplot, "Age", shade=True)
facet.set(xlim=(0, train['Age'].max()))
facet.add_legend()
plt.xlim(0, 20) # 分段画出来 plt.xlim(20, 30),(30, 40),(40, 60)
(0, 20)
train.info() # Age 字段已经填充
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Sex 891 non-null int64
Age 891 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
Title 891 non-null int64
dtypes: float64(2), int64(7), object(3)
memory usage: 83.7+ KB
如何将一个属性变成一个分类变量形式
# 将 Age 年龄变成 Categorical Variable 分类变量
# 根据不同的年龄段划分成不同的数值
for dataset in train_test_data:
dataset.loc[dataset['Age'] <= 16, 'Age'] = 0,
dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 26), 'Age'] = 1,
dataset.loc[(dataset['Age'] > 26) & (dataset['Age'] <= 36), 'Age'] = 2,
dataset.loc[(dataset['Age'] > 36) & (dataset['Age'] <= 62), 'Age'] = 3,
dataset.loc[ dataset['Age'] > 62, 'Age'] = 4
train.head()
bar_chart("Age")
Embarked
根据属性的多种不同取值来绘制图形
train[train['Pclass']==1]['Embarked'] # 找出P属性中值为1的每个 Embarked 属性值
1 C
3 S
6 S
11 S
23 S
..
871 S
872 S
879 C
887 S
889 C
Name: Embarked, Length: 216, dtype: object
# 找出P属性中值为1的每个 Embarked 属性值,再进行分类统计
Pclass1 = train[train['Pclass']==1]['Embarked'].value_counts()
Pclass2 = train[train['Pclass']==2]['Embarked'].value_counts()
Pclass3 = train[train['Pclass']==3]['Embarked'].value_counts()
df = pd.DataFrame([Pclass1, Pclass2, Pclass3]) # 将新生成的3个数据组成DF数据框
df.index = ['1st class','2nd class', '3rd class'] # 添加上索引
df.plot(kind='bar',stacked=True, figsize=(10,5)) # 通过叠加的方式绘制柱状堆叠图
df
# fill out missing embark with S embark
for dataset in train_test_data:
dataset['Embarked'] = dataset['Embarked'].fillna('S') # 用S来填充缺失值
如何将属性中的字符串转成数值型?
embarked_mapping = {"S": 0, "C": 1, "Q": 2}
for dataset in train_test_data:
dataset['Embarked'] = dataset['Embarked'].map(embarked_mapping) # map函数进行匹配
Fare
缺失值填充中位数
# fill missing Fare with median fare for each Pclass
train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace=True) # 对Fare属性进行缺失值填充:通过 Pclass 属性分组,指定Fare的中位数填充缺失值
test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace=True)
绘制图形
facet = sns.FacetGrid(train, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Fare',shade= True)
facet.set(xlim=(0, train['Fare'].max()))
facet.add_legend()
plt.show()
将Fare属性分段
for dataset in train_test_data:
dataset.loc[ dataset['Fare'] <= 17, 'Fare'] = 0,
dataset.loc[(dataset['Fare'] > 17) & (dataset['Fare'] <= 30), 'Fare'] = 1,
dataset.loc[(dataset['Fare'] > 30) & (dataset['Fare'] <= 100), 'Fare'] = 2,
dataset.loc[ dataset['Fare'] > 100, 'Fare'] = 3
Cabin
train.Cabin.value_counts()
B96 B98 4
C23 C25 C27 4
G6 4
E101 3
F33 3
..
C62 C64 1
D28 1
D46 1
B41 1
E17 1
Name: Cabin, Length: 147, dtype: int64
for dataset in train_test_data:
# 取出Cabin中的第一个字母
dataset['Cabin'] = dataset['Cabin'].str[:1] # Cabin 已经变成了单个字母
train[train['Pclass']==1]['Cabin'].value_counts()
C 59
B 47
D 29
E 25
A 15
T 1
Name: Cabin, dtype: int64
# 统计每个Pclass中的每个字母各出现多少次
Pclass1 = train[train['Pclass']==1]['Cabin'].value_counts()
Pclass2 = train[train['Pclass']==2]['Cabin'].value_counts()
Pclass3 = train[train['Pclass']==3]['Cabin'].value_counts()
# 生成数据框和行索引,绘图
df = pd.DataFrame([Pclass1, Pclass2, Pclass3])
df.index = ['1st class','2nd class', '3rd class']
df.plot(kind='bar',stacked=True, figsize=(10,5))
cabin_mapping = {"A": 0, "B": 0.4,
"C": 0.8, "D": 1.2,
"E": 1.6, "F": 2,
"G": 2.4, "T": 2.8} # 每个字母匹配不同的数字
for dataset in train_test_data:
dataset['Cabin'] = dataset['Cabin'].map(cabin_mapping) # 将Cabin中的字母变成数字
# fill missing Fare with median fare for each Pclass
train["Cabin"].fillna(train.groupby("Pclass")["Cabin"].transform("median"), inplace=True)
test["Cabin"].fillna(test.groupby("Pclass")["Cabin"].transform("median"), inplace=True)
FamilySize
添加属性familysize
train["FamilySize"] = train["SibSp"] + train["Parch"] + 1
test["FamilySize"] = test["SibSp"] + test["Parch"] + 1
facet = sns.FacetGrid(train, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'FamilySize',shade= True)
facet.set(xlim=(0, train['FamilySize'].max()))
facet.add_legend()
plt.xlim(0)
(0, 11.0)
train.head() # 最后添加了familysize属性
family_mapping = {1: 0, 2: 0.4, 3: 0.8, 4: 1.2, 5: 1.6, 6: 2, 7: 2.4, 8: 2.8, 9: 3.2, 10: 3.6, 11: 4}
for dataset in train_test_data:
dataset['FamilySize'] = dataset['FamilySize'].map(family_mapping)
删除某些属性
# 使用drop删除不需要的属性
features_drop = ['Ticket', 'SibSp', 'Parch']
train = train.drop(features_drop, axis=1)
test = test.drop(features_drop, axis=1)
train = train.drop(['PassengerId'], axis=1)
train_data = train.drop('Survived', axis=1) # train_data是删除3个属性后的数据
target = train['Survived']
train_data.shape, target.shape
((891, 8), (891,))
train_data.head(10)
建模
导入各种模型
# Importing Classifier Modules
from sklearn.neighbors import KNeighborsClassifier # K近邻
from sklearn.tree import DecisionTreeClassifier # 决策树
from sklearn.ensemble import RandomForestClassifier # 随机森林
from sklearn.naive_bayes import GaussianNB # 贝叶斯分类器
from sklearn.svm import SVC # 支持向量机
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 9 columns):
Survived 891 non-null int64
Pclass 891 non-null int64
Sex 891 non-null int64
Age 891 non-null float64
Fare 891 non-null float64
Cabin 891 non-null float64
Embarked 891 non-null int64
Title 891 non-null int64
FamilySize 891 non-null float64
dtypes: float64(4), int64(5)
memory usage: 62.8 KB
交叉验证
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k_fold = KFold(n_splits=10, shuffle=True, random_state=0)
# KNN
clf = KNeighborsClassifier(n_neighbors = 13)
scoring = 'accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
[0.82222222 0.76404494 0.80898876 0.83146067 0.87640449 0.82022472
0.85393258 0.79775281 0.84269663 0.84269663]
round(np.mean(score)*100, 2) # KNN score
82.6
## 决策树
clf = DecisionTreeClassifier()
scoring = 'accuracy'
score = cross_val_score(clf, train_data,
target, cv=k_fold,
n_jobs=1, scoring=scoring)
print(score)
[0.76666667 0.82022472 0.76404494 0.7752809 0.88764045 0.76404494
0.83146067 0.82022472 0.74157303 0.79775281]
round(np.mean(score)*100, 2)
79.69
### 随机森林
clf = RandomForestClassifier(n_estimators=13) # 13 个评估器
scoring = 'accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
[0.8 0.82022472 0.79775281 0.76404494 0.86516854 0.82022472
0.80898876 0.80898876 0.75280899 0.80898876]
round(np.mean(score)*100, 2) # Random Forest Score
80.47
#### 贝叶斯
clf = GaussianNB()
scoring = 'accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
[0.85555556 0.73033708 0.75280899 0.75280899 0.70786517 0.80898876
0.76404494 0.80898876 0.86516854 0.83146067]
round(np.mean(score)*100, 2)
78.78
##### SVM
clf = SVC()
scoring = 'accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
[0.83333333 0.80898876 0.83146067 0.82022472 0.84269663 0.82022472
0.84269663 0.85393258 0.83146067 0.86516854]
round(np.mean(score)*100,2)
83.5
testing
从上面的结果中观察到使用支持向量机
的效果是最好的。
clf = SVC()
clf.fit(train_data, target)
test_data = test.drop("PassengerId", axis=1).copy()
prediction = clf.predict(test_data)
submission = pd.DataFrame({
"PassengerId": test["PassengerId"],
"Survived": prediction
})
submission.to_csv('submission.csv', index=False) # 将最终的结果文件写入csv
submission = pd.read_csv('submission.csv')
submission.head() # 读取文件的前5行数据