SQL作业集:银行贷款客户特征分析

案例背景

借贷业务是大多数银行重要的资金来源,通过资金的流动赚取利润,例如将吸引用户办理定期存款,将存款转化为贷款出借给需求方赚取利息作为利润。提高存贷款流动性即为银行开展业务的基本逻辑。
本案例中的银行为Thera Bank,该银行大多数业务为储蓄业务,为了将存款用户更多地转化为贷款客户,银行去年为存量客户开展了一项推广活动,有部分客户增加了贷款业务。本数据集记录的就是参与了此次活动的用户信息
该类分析能够帮助零售营销部门制定精准营销策略,以尽可能少的资源触达客户提高获客成功率。该部门希望识别出更有可能购买贷款的潜在客户,提高转化成功率,同时降低广告费用。


使用mysql读取csv数据

READ DATA LOCAL INFILE 'E:\bank_personal_loan_modelling.csv'  INTO TABLE bank.loan FIELDS TERMINATED BY ',';

Q1.本次推广活动的效果如何

SELECT 
    personal_loan,
    COUNT(personal_loan) AS Count,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan)*100,1),'%') AS Percentage
FROM loan
GROUP BY personal_loan;

在对于参与本次活动的5000名用户中,共有480名用户被转化为贷款对象,占整体的9.6%,接下来的分析都围绕着这480名贷款用户展开


Q2.申请贷款的用户年龄分布是什么样的

SELECT MIN(age), MAX(age) FROM loan; # Check the upper bound and lower bound of age

ALTER TABLE loan ADD COLUMN age_group VARCHAR(255); # adding column

UPDATE loan SET age_group = CASE # binning 
    WHEN age >=20 AND Age <=29 THEN '20-30'  
    WHEN Age >=30 AND Age <=39 THEN '30-40'
    WHEN Age >=40 AND Age <=49 THEN '40-50'
    WHEN Age >=50 AND Age <=59 THEN '50-60'
    else '60-70'
    END;

SELECT
    age_group AS Age_Group,
    COUNT(personal_loan) AS Counts,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan WHERE personal_loan = 1)*100,1),'%') AS Percentage
FROM loan
WHERE personal_loan = 1
GROUP BY age_group WITH ROLLUP;

在这里为了增强查询语句的可读性,首先通过ALTER和UPDATE语句增加一栏对年龄进行分组,而后展开分析。
不难看出30-60岁这一区间占据了贷款人数的70%以上,这部分人群收入稳定偿付能力较强


Q3. 贷款用户的收入状况

SELECT MAX(income), MIN(income) FROM loan; # Check the lower and upper bound of income

ALTER TABLE loan ADD COLUMN income_group VARCHAR(255);

UPDATE loan SET income_group = CASE
    WHEN Income >=60 AND Income <100 THEN '60000-100000'
    WHEN Income >=100 AND Income <140 THEN '100000-140000'
    WHEN Income >=140 AND Income <180 THEN '140000-180000'
    ELSE '>=180000' 
    END;
    
SELECT
    income_group AS Income_group,
    COUNT(personal_loan) AS Counts,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan WHERE personal_loan = 1)*100,1),'%') AS Percentage
FROM loan
WHERE personal_loan = 1
GROUP BY income_group WITH ROLLUP;

贷款客户只要集中在100,000-180,000之间,收入较低的用户可能没达到授信标准,而收入较高的群体可能不需要个人贷款


Q4.贷款用户的家庭人口特征如何

SELECT MIN(family), MAX(family) FROM loan;

    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 1
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 2
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 3
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 4;

这里通过UNION语句连接多个列数相同的行记录
总体来看,5000名客户中单身人士稍多一些,但组间差距不是太大。3口和4口之家的贷款人数比例较高,可能是为解决平时生活开支而申请


Q5.每月信用卡消费情况

SELECT MIN(ccavg), MAX(ccavg) FROM loan;
ALTER TABLE loan ADD COLUMN spending_group VARCHAR(255);
UPDATE loan SET spending_group = CASE 
    WHEN CCAvg >=0 AND CCAvg <1 THEN'0-1000'
    WHEN CCAvg >=1 AND CCAvg <2 THEN'1000-2000'
    WHEN CCAvg >=2 AND CCAvg <3 THEN'2000-3000'
    WHEN CCAvg >=3 AND CCAvg <4 THEN'3000-4000'
    WHEN CCAvg >=4 AND CCAvg <5 THEN'4000-5000'
    WHEN CCAvg >=5 AND CCAvg <6 THEN'5000-6000'
    WHEN CCAvg >=6 AND CCAvg <7 THEN'6000-7000'
    WHEN CCAvg >=7 AND CCAvg <8 THEN'7000-8000'
    WHEN CCAvg >=8 AND CCAvg <9 THEN'8000-9000'
    ELSE '9000-10000'
    END;
    
SELECT 
    spending_group,
    COUNT(*) AS Counts,
    SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
    CONCAT(ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),2),'%') AS Percentage
FROM loan
GROUP BY spending_group;

信用卡消费额在5000元以上的贷款意愿更为强烈


Q6. 贷款用户是否原本有房屋在抵押

SELECT
    (SELECT COUNT(*) FROM loan WHERE personal_loan=1) AS Personal_loan,
    SUM(CASE WHEN mortgage > 0 THEN 1 ELSE 0 END) AS Mortage_count,
    CONCAT(ROUND(SUM(CASE WHEN mortgage > 0 THEN 1 ELSE 0 END)/(SELECT COUNT(*) FROM loan WHERE personal_loan=1) *100,1),'%') AS Mortgage_percentage,
    MAX(mortgage)*1000 AS MAX_mortgage,
    ROUND(AVG(mortgage)*1000) AS AVG_mortgage
FROM loan
WHERE personal_loan = 1 AND mortgage <> 0;

在贷款用户中,有房屋抵押的占35%,最大抵押价值617000,均值为288131


Q7. 根据房屋抵押价值对用户分类


SELECT MIN(mortgage), MAX(mortgage) FROM loan;

ALTER TABLE loan ADD COLUMN mortgage_group VARCHAR(255);
UPDATE loan SET mortgage_group = CASE
    WHEN mortgage = 0 THEN 0
    WHEN mortgage >=1 AND mortgage <100 THEN '1000-100000'
    WHEN mortgage >=100 AND mortgage <200 THEN '100000*200000'
    WHEN mortgage >=200 AND mortgage <300 THEN '200000-300000'
    WHEN mortgage >=300 AND mortgage <400 THEN '300000-400000'
    WHEN mortgage >= 400 AND mortgage <500 THEN '400000-500000'
    WHEN mortgage >= 500 AND mortgage <600 THEN '500000-600000'
    ELSE '>600000'
    END;
    
SELECT
    mortgage_group,
    COUNT(*) AS Mortgage_count,
    SUM(personal_loan) Personal_loan_count,
    CONCAT(ROUND(SUM(personal_loan)/COUNT(*)*100,1),'%') AS percentage
FROM loan
 GROUP BY mortgage_group;

在已经办理了房屋抵押的用户中,房屋抵押价值在300,000以上的办理个人贷款的意愿更高


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351