SQL练习题(2)

SQL练习

题目均取自sqlzoo, 在此只写下自己的答案。

4. SELECT within SELECT

    4.1 select name from world where population > (select population from world where name = 'Russia')

    4.2 select name from world where (continent = 'Europe') and (gdp/population > (select gdp/population from world where name = 'United Kingdom'))

    4.3 select name,continent from world where continent in (select continent from world where name = 'Argentina' or name ='Australia') order by name

    4.4 select name,population from world where population > (select population from world where name= 'Canada') and population < (select population from world where name='Poland')

    4.5 select name, concat(round(population/(select population from world where name = 'Germany')*100),'%' )from world where continent = 'Europe'

    4.6 select name from world where gdp > all(select gdp from world where continent = 'Europe' and gdp is not null)

    4.7  select continent,name,area from world where area in (select max(area) from world group by continent )

    4.8 select continent, name from world x where name = (select name from world y where x.continent = y.continent order by name limit 1)

    4.9 select name, continent, population from world x where 25000000>=all(select population from world y where x.continent = y.continent)

    4.10 select name, continent from world x where population >= all(select population*3 from world y where x.continent = y.continent and x.name<>y.name)

5. SUM and COUNT

    5.1 select sum(population) from world

    5.2 select distinct continent from world

    5.3 select sum(gdp) from world where continent = 'Africa'

    5.4 select count(*) from world where area >=1000000

    5.5 select sum(population) from world where name in ('Estonia', 'Latvia', 'Lithuania')

    5.6 select continent,count(name) from world group by continent

    5.7 select continent, count(name) from world where population > 10000000 group by continent

    5.8 select continent from world group by continent having sum(population)>=100000000

6. The JOIN operation

    6.1 select matchid, player from goal where teamid = 'GER'

    6.2 select id, stadium, team1,team2 from game a join goal b on a.id = b.matchid where player = 'Lars Bender'

    6.3 select player, teamid, stadium, mdate from game a join goal b on a.id = b.matchid where teamid = 'GER'

    6.4 select team1, team2, player from game a join goal b on a.id = b.matchid where player like 'Mario%'

    6.5 select player,teamid,coach,gtime from goal a join eteam b on a.teamid = b.id where gtime <=10

    6.6 select mdate, teamname from game join eteam on team1=eteam.id where coach = 'Fernando Santos'

    6.7 select player from goal join game on goal.matchid=game.id where stadium='National Stadium, Warsaw'

    6.8 select distinct player from goal join game on matchid=id where (teamid=team2 and team1='GER') or (teamid=team1 and team2='GER')

    6.9 select teamname,count(teamid) from goal join eteam on teamid=id group by teamname

    6.10 select stadium, count(*) from game join goal on id=matchid group by stadium

    6.11 select matchid, mdate, count(teamid) from game join goal on matchid=id where team1='POL' or team2='POL' group by matchid,mdate

    6.12 select matchid, mdate,count(teamid) from game join goal on matchid=id where teamid='GER' group by matchid,mdate

    6.13 select mdate,team1,sum(case when teamid=team1 then 1 else 0 end) score1,team2,sum(case when teamid=team2 then 1 else 0 end) score2 from game left join goal on matchid=id group by mdate,matchid,team1,team2

本章结束,下一章会讲解一个机器学习入门项目:泰坦尼克号生存预测的实现。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容