EigenFaces人脸识别---OpenCV-Python开发指南(43)

EigenFaces原理

EigenFaces通常也被称为特征脸,它使用主成分分析(Principal Component Analysis,PAC)方法将高维的人脸数据处理为低维数据后,在进行数据分析和处理,获取识别结果。

EigenFaces简单来说就是对原始数据使用PCA方法进行降维,获取其中的主成分信息,从而实现人脸识别的方法。

EigenFaces识别步骤

在OpenCV中,它给我们提供函数cv2.face.EigenFaceRecognizer_create()生成特征脸识别器,然后应用cv2.face_EigenFaceRecognizer.train()函数完成训练,最后用cv2.face_FaceRecognizer.predict()导入要识别的人脸图像,获取预测结果。

是不是与上一篇博文人脸识别的步骤一摸一样呢?不过,虽然最后一个方法相同,但前面两个方法还是不同的,我们也同样介绍一下函数的定义与使用。

cv2.face.EigenFaceRecognizer_create(num_components=None, threshold=None)

num_components:在PCA中要保留的分量个数。当然,该参数值通常要根据输入数据来具体确定,并没有一定取值。一般程序中,取80即可

threshold:进行人脸识别所采用的阈值

cv2.face_EigenFaceRecognizer.train(self, src, labels)

这里的src,labels参数与LBPH人脸识别的train函数一摸一样,这里就不在赘述。

EigenFaces实战人脸识别

了解了EigenFaces人脸识别步骤。下面,我们还是使用前文的2张图片作为训练集,进行瑞克与尼根的判断,具体代码如下:

import cv2
import numpy as np

images = []
images.append(cv2.imread("42_1.jpg", cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("42_2.jpg", cv2.IMREAD_GRAYSCALE))
labels = [0, 1]
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image = cv2.imread('42_4.jpg', cv2.IMREAD_GRAYSCALE)
label, confidence = recognizer.predict(predict_image)
if label == 0:
    print("匹配的人脸为尼根")
elif label == 1:
    print("匹配的人脸为瑞克")
print("confidence=", confidence)

这里我们使用尼根的头像作为测试人脸识别的图像。运行之后效果如下:


1.png

EigenFaces人脸识别唯一的缺陷就是不管是训练的图像,还是测试的图像,其大小必须一致。而LBPH人脸识别并不需要图像大小一致。还有EigenFaces人脸识别返回的confidence大小介于0到20000,只要低于5000都被认为是可靠的结果。这个有LBPH不同,需要额外注意。

训练集图像:


42_1.jpg
42_2.jpg

测试图像:


42_4.jpg
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容