斐波那契数列递归与非递归实现

我们知道斐波那契数列的实现方式是,下标为1或者2时,其值就是1,当下标大于3时,则f(n) = f(n-1) + f(n-2);下面编写了递归与非递归两种实现方式(Java代码):

public class Fibonacci {
    public static void main(String []args) {
        System.out.println(FibonacciLoop(40));
        System.out.println(FibonacciNoLoop(40));
    }

    public static long FibonacciLoop(int index) {
        if (index <= 0) {
            System.out.println("Parameter Error!");
            return -1;
        }
        if (index == 1 || index == 2) {
            return 1;
        }
        else {
            return FibonacciLoop(index - 1) + FibonacciLoop(index - 2);
        }
    }

    public static long FibonacciNoLoop(int index) {
        if (index <= 0) {
            System.out.println("Parameter Error!");
            return -1;
        }       
        if (index == 1 || index == 2) {
            return 1;
        }

        long m = 1L;
        long n = 1L;
        long result = 0;

        for (int i = 3; i <= index; i++) {
            result = m + n;
            m = n;
            n = result;
        }

        return result;
    }
}

测试当下标为40时,结果为102334155。

斐波那契数列还有很多衍生的问题,比如青蛙跳台阶问题:

 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

可以把n级台阶时的跳法看成是n的函数,记为f(n)。
当n>2时,第一次跳的时候就有两种不同的选择:
一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);
另一种选择是第一次跳2级,此时跳法数目等于后面剩下n-2级台阶的跳法数目,即为f(n-2)。
因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。
递归与非递归的Java代码。

public static long FrogJumpLoop(int n) {
        if (n <= 0) {
            System.out.println("Parameter Error!");
            return -1;
        }
        if (n == 1) {
            return 1;
        }
        if (n == 2) {
            return 2;
        }
        else {
            return FrogJumpLoop(n - 1) + FrogJumpLoop(n - 2);
        }
    }

    public static long FrogJumpNoLoop(int n) {
        if (n <= 0) {
            System.out.println("Parameter Error!");
            return -1;
        }
        if (n == 1) {
            return 1;
        }
        if (n == 2) {
            return 2;
        }

        long step1 = 1L;
        long step2 = 2L;
        long result = 0;

        for (int i = 3; i <= n; i++) {
            result = step1 + step2;
            step1 = step2;
            step2 = result;
        }

        return result;
    }

其他关于斐波那契变形的题目可以参考博客:http://blog.csdn.net/u010177286/article/details/47129019

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容