Python爬虫(16)利用Scrapy爬取银行理财产品信息(共12多万条)

  本次Scrapy爬虫的目标是爬取“融360”网站上所有银行理财产品的信息,并存入MongoDB中。网页的截图如下,全部数据共12多万条。

银行理财产品

  我们不再过多介绍Scrapy的创建和运行,只给出相关的代码。关于Scrapy的创建和运行,有兴趣的读者可以参考:Scrapy爬虫(4)爬取豆瓣电影Top250图片
  修改items.py,代码如下,用来储存每个理财产品的相关信息,如产品名称,发行银行等。

import scrapy

class BankItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    bank = scrapy.Field()
    currency = scrapy.Field()
    startDate = scrapy.Field()
    endDate = scrapy.Field()
    period = scrapy.Field()
    proType = scrapy.Field()
    profit = scrapy.Field()
    amount = scrapy.Field()

  创建爬虫文件bankSpider.py,代码如下,用来爬取网页中理财产品的具体信息。

import scrapy
from bank.items import BankItem

class bankSpider(scrapy.Spider):
    name = 'bank'
    start_urls = ['https://www.rong360.com/licai-bank/list/p1']

    def parse(self, response):

        item = BankItem()
        trs = response.css('tr')[1:]
        
        for tr in trs:
            item['name'] = tr.xpath('td[1]/a/text()').extract_first()
            item['bank'] = tr.xpath('td[2]/p/text()').extract_first()
            item['currency'] = tr.xpath('td[3]/text()').extract_first()
            item['startDate'] = tr.xpath('td[4]/text()').extract_first()
            item['endDate'] = tr.xpath('td[5]/text()').extract_first()
            item['period'] = tr.xpath('td[6]/text()').extract_first()
            item['proType'] = tr.xpath('td[7]/text()').extract_first()
            item['profit'] = tr.xpath('td[8]/text()').extract_first()
            item['amount'] = tr.xpath('td[9]/text()').extract_first()

            yield item

        next_pages = response.css('a.next-page')

        if len(next_pages) == 1:
            next_page_link = next_pages.xpath('@href').extract_first() 
        else:
            next_page_link = next_pages[1].xpath('@href').extract_first()
       
        if next_page_link:
            next_page = "https://www.rong360.com" + next_page_link
            yield scrapy.Request(next_page, callback=self.parse)

  为了将爬取的数据储存到MongoDB中,我们需要修改pipelines.py文件,代码如下:

# pipelines to insert the data into mongodb
import pymongo
from scrapy.conf import settings

class BankPipeline(object):
    def __init__(self):
        # connect database
        self.client = pymongo.MongoClient(host=settings['MONGO_HOST'], port=settings['MONGO_PORT'])

        # using name and password to login mongodb
        # self.client.admin.authenticate(settings['MINGO_USER'], settings['MONGO_PSW'])
        
        # handle of the database and collection of mongodb
        self.db = self.client[settings['MONGO_DB']]
        self.coll = self.db[settings['MONGO_COLL']] 

    def process_item(self, item, spider):
        postItem = dict(item)
        self.coll.insert(postItem)
        return item

其中的MongoDB的相关参数,如MONGO_HOST, MONGO_PORT在settings.py中设置。修改settings.py如下:

  1. ROBOTSTXT_OBEY = False
  2. ITEM_PIPELINES = {'bank.pipelines.BankPipeline': 300}
  3. 添加MongoDB连接参数
MONGO_HOST = "localhost"  # 主机IP
MONGO_PORT = 27017  # 端口号
MONGO_DB = "Spider"  # 库名 
MONGO_COLL = "bank"  # collection名
# MONGO_USER = ""
# MONGO_PSW = ""

其中用户名和密码可以根据需要添加。

  接下来,我们就可以运行爬虫了。运行结果如下:

运行结果

共用时3小时,爬了12多万条数据,效率之高令人惊叹!
  最后我们再来看一眼MongoDB中的数据:

MongoDB数据库

  Perfect!本次分享到此结束,欢迎大家交流~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容