抛物线三切线定理证明

抛物线三切线示意图

如上图所示,已知:

1. 抛物线的一般形式为:y = ax^2 + bx + c

2.p_{0}p_{2}是抛物线上不相同的两点,过这两点分别作切线,交于点p_{1}

3.p_{02}p_{0} p_{2}间一点,过点p_{02}作切线,分别交直线p_{0}p_{1}p_{1}p_{2}于点p_{01}和点p_{11}

证:\frac{p_{0}p_{01}}{ p_{0}p_{1} } =  \frac{p_{1}p_{11}}{p_{1}p_{2}} = \frac{p_{01}p_{02}}{p_{01} p_{11}}




设过此抛物线上任意一点(x_{t},y_{t})的切线方程为:y = kx + d

此点同时满足抛物线和切线方程,即:ax_{t}^2 + bx_{t} + c = kx_{t} + d

则:d = ax_{t}^2 + (b-k)x_{t} + c

对抛物线求一阶导数,得到此切线的斜率:k = 2ax_{t} + b

则过点(x_{t},y_{t})的切线可以表示为:

\begin{align}  y = kx_{t} + d &= (2ax_{t} + b)x_{t} + ax_{t}^2 + (b-(2ax_{t} + b))x_{t} + c  \\  &=  (2ax_{t} + b)x_{t} - ax_{t}^2 + c\end{align}

设三个切点的坐标分别为:\begin{cases}p_{0}&:(x_{0},y_{0}) \\p_{02}&:(x_{02},y_{02}) \\p_{2}&:(x_{2},y_{2}) \end{cases}

则三条直线的方程即为:\begin{cases}p_{0}p_{1}&:(2ax_{0} + b)x_{0} - ax_{0}^2 + c \\p_{01}p_{11}&:(2ax_{02} + b)x_{02} - ax_{02}^2 + c \\p_{1}p_{2}&:(2ax_{2} + b)x_{2} - ax_{2}^2 + c \end{cases}

对点p_{01}分析:该点是直线p_{0}p_{1}与直线p_{01}p_{11}的交点,即同时满足两个直线方程:

\begin{align} (2ax_{0} + b)x_{01} - ax_{0}^2 + c &= (2ax_{02} + b)x_{01} - ax_{02}^2 + c \\  ( (2ax_{0} + b) - (2ax_{02} + b))x_{01} &= a(x_{0}^2 - x_{02}^2) \\2a(x_{0} - x_{02})x_{01} &= a(x_{0} + x_{02})(x_{0} - x_{02}) \\2x_{01} &= x_{0} + x_{02} \\x_{01} &= \frac{x_{0} + x_{02}}{2}\end{align}

同理,对点p_{1}p_{11}分析,得到\begin{cases}x_{1} &=  \frac{x_{0} + x_{2}}{2} \\x_{11} &=  \frac{x_{02} + x_{2}}{2}\end{cases}

则:\begin{cases}\frac{p_{0}p_{01}}{p_{0}p_{1}} &= \frac{x_{01} - x_{0}}{x_{1} - x_{0} } &= \frac{\frac{x_{0} + x_{02}}{2} - x_{0}}{\frac{x_{0} + x_{2}}{2} - x_{0} } &=  \frac{x_{02} - x_{0} }{x_{2} - x_{0} }  \\\frac{p_{1}p_{11}}{p_{1}p_{2}} &= \frac{x_{11} - x_{1}}{x_{2} - x_{1} } &= \frac{\frac{x_{02} + x_{2}}{2} - \frac{x_{0} + x_{2}}{2}}{x_{2} -\frac{x_{0} + x_{2}}{2} } &= \frac{x_{02} - x_{0} }{x_{2} - x_{0} } \\\frac{p_{01}p_{02}}{p_{01} p_{11}} &= \frac{x_{02} - x_{01}}{x_{11} - x_{01} } &= \frac{x_{02} - \frac{x_{0} + x_{02}}{2}}{\frac{x_{02} + x_{2}}{2}  -\frac{x_{0} + x_{02}}{2} } &= \frac{x_{02} - x_{0} }{x_{2} - x_{0} } \end{cases}

即:\frac{p_{0}p_{01}}{ p_{0}p_{1} } =  \frac{p_{1}p_{11}}{p_{1}p_{2}} = \frac{p_{01}p_{02}}{p_{01} p_{11}}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。