一、用Scrapy框架开发爬虫

用Scrapy框架做一个爬虫,将结果保存到MongoDB

本文用Scrapy框架实现一个爬虫的例子,Scrapy的安装和配置在这里不赘述,请自行百度相关文档,本例采用PyCharm作为集成开发工具,在Mac上开发测试通过。 本例子爬取的目标站点是:http://quotes.toscrape.com本文的目的是通过一个简单的例子,让读者迅速了解Srapy创建爬虫的过程,从而获得一个感性认识。

下载本工程

1 创建Scrapy项目

使用3个命令: 生成工程:

scrapy startproject mini_scrapy

进入工程目录

cd mini_scrapy

生成爬虫

scrapy genspider quotes quotes.toscrape.com

以下为运行命令的情况:

➜  PyProjects which scrapy
/Library/Frameworks/Python.framework/Versions/3.6/bin/scrapy
➜  PyProjects scrapy startproject mini_scrapy
New Scrapy project 'mini_scrapy', using template directory '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scrapy/templates/project', created in:
    /Users/thomas/PyProjects/mini_scrapy
You can start your first spider with:
    cd mini_scrapy
    scrapy genspider example example.com
➜  PyProjects cd mini_scrapy
➜  mini_scrapy ll
total 8
drwxr-xr-x  9 thomas  staff   288B  4  4 15:30 mini_scrapy
-rw-r--r--  1 thomas  staff   265B  4  4 15:30 scrapy.cfg
➜  mini_scrapy scrapy genspider quotes quotes.toscrape.com
Created spider 'quotes' using template 'basic' in module:
  mini_scrapy.spiders.quotes

用PyCharm打开项目,可以看到目录结构如下


1.png

为项目设置一个Python虚拟机,


2.png

在IDE的terminnal处运行爬虫,体会一下。

(venv) ➜  mini_scrapy scrapy crawl quotes
2019-04-04 15:44:34 [scrapy.utils.log] INFO: Scrapy 1.5.1 started (bot: mini_scrapy)
2019-04-04 15:44:34 [scrapy.utils.log] INFO: Versions: lxml 4.2.4.0, libxml2 2.9.8, cssselect 1.0.3, parsel 1.5.0, w3lib 1.19.0, Twisted 18.7.0, Python 3.6.3 (v3.6.3:2c5fed86e0, Oct  3 2017, 00:32:08) - [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)], pyOpenSSL 18.0.0 (OpenSSL 1.1.0i  14 Aug 2018), cryptography 2.3.1, Platform Darwin-18.5.0-x86_64-i386-64bit
2019-04-04 15:44:34 [scrapy.crawler] INFO: Overridden settings: {'BOT_NAME': 'mini_scrapy', 'NEWSPIDER_MODULE': 'mini_scrapy.spiders', 'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['mini_scrapy.spiders']}
2019-04-04 15:44:34 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.corestats.CoreStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.memusage.MemoryUsage',
 'scrapy.extensions.logstats.LogStats']
2019-04-04 15:44:34 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
 'scrapy.downloadermiddlewares.retry.RetryMiddleware',
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware',
 'scrapy.downloadermiddlewares.stats.DownloaderStats']
2019-04-04 15:44:34 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
 'scrapy.spidermiddlewares.referer.RefererMiddleware',
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
 'scrapy.spidermiddlewares.depth.DepthMiddleware']
2019-04-04 15:44:34 [scrapy.middleware] INFO: Enabled item pipelines:
[]
2019-04-04 15:44:34 [scrapy.core.engine] INFO: Spider opened
2019-04-04 15:44:34 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2019-04-04 15:44:34 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023
2019-04-04 15:44:36 [scrapy.core.engine] DEBUG: Crawled (404) <GET http://quotes.toscrape.com/robots.txt> (referer: None)
2019-04-04 15:44:36 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.toscrape.com/> (referer: None)
2019-04-04 15:44:36 [scrapy.core.engine] INFO: Closing spider (finished)
2019-04-04 15:44:36 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 446,
 'downloader/request_count': 2,
 'downloader/request_method_count/GET': 2,
 'downloader/response_bytes': 2701,
 'downloader/response_count': 2,
 'downloader/response_status_count/200': 1,
 'downloader/response_status_count/404': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2019, 4, 4, 7, 44, 36, 482556),
 'log_count/DEBUG': 3,
 'log_count/INFO': 7,
 'memusage/max': 65634304,
 'memusage/startup': 65634304,
 'response_received_count': 2,
 'scheduler/dequeued': 1,
 'scheduler/dequeued/memory': 1,
 'scheduler/enqueued': 1,
 'scheduler/enqueued/memory': 1,
 'start_time': datetime.datetime(2019, 4, 4, 7, 44, 34, 345877)}
2019-04-04 15:44:36 [scrapy.core.engine] INFO: Spider closed (finished)

从上面可以看出启动过程依次访问的路径:settings->middleware->pipelines->spider, pipelines和spider通过items关联起来。

2 解析获取到的网页

通过Chrome或Firefox浏览器的开发调试页面(开发人员都懂的),获取需要抓取内容的CSS选择器,本例我们抓取名言、作者、标签,代码如下

 quotes = response.css('.quote')
    for quote in quotes:
        text = quote.css('.text::text').extract_first()
        author = quote.css('.author::text').extract_first()
        tags = quote.css('.tags .tag::text').extract()

为了调试方便,有时也会使用在IDE环境的底部的terminal使用命令行运行,进行手工调试:

(venv) ➜  scrapy shell quotes.toscrape.com

3 定义并使用Item

爬虫和管道的对接点在 item,在items.py中,将需要抓取的内容作如下定义:

class QuoteItem(scrapy.Item):
    text = scrapy.Field()
    author = scrapy.Field()
    tags = scrapy.Field()

然后在爬虫文件quotes.py中引入item,并使用它:

def parse(self, response):
    quotes = response.css('.quote')
    for quote in quotes:
        item = QuoteItem()
        text = quote.css('.text::text').extract_first()
        author = quote.css('.author::text').extract_first()
        tags = quote.css('.tags .tag::text').extract()
        item['text'] = text
        item['author'] = author
        item['tags'] = tags
        yield item

至此完成了对当前页面的数据解析工作,由于本页面上还有下一页的按钮,也需要进行爬取和处理,所以进行第4步

4 爬取Next页面

首先判断页面是否有Next按钮,如果有,获取对应的url,并提交处理请求,对于页面反馈的处理,仍然使用parse函数进行处理,可以看出是一个典型的递归处理过程,代码如下:

next_page_url = response.css('.pager .next a::attr(href)').extract_first()
    if next_page_url:
        url = response.urljoin(next_page_url)
        yield scrapy.Request(url=url, callback=self.parse)

至此,你已经完成所有页面的爬取和处理工作,可以在下一步看看爬取的结果了。

5 运行并保存结果

运行爬虫有几种方式:命令行方式,通过在python文件里调用,还有web调用方式,本例子先讲述前两种,这一步我们使用命令行方式,可以使用-o选项来保存爬虫爬取结果,可以支持输出 json, jl, csv, xml, marshal格式, 也可以存到远程文件服务器(如,ftp://user:pass@ftp.example.com/path/quotes.csv) ,以下命令保存到json文件中:

(venv) ➜ scrapy crawl quotes -o quotes.json

6 增加 main.py,以便于运行或调试爬虫

import sys
import os
from scrapy.cmdline import execute

sys.path.append(os.path.dirname(os.path.abspath(__file__)))
execute(["scrapy", "crawl", "quotes"])

可以通过main.py运行一下爬虫

7 保存到MongoDB

到目前位置,爬虫的结果还未保存到数据库,下面演示如何保存到MongoDB,在Scrapy框架中,提交Item后,如果在setting文件里配置了管道pipeline, item就会交给pipeline处理。
1、首先在pipelines.py里,编写管道如下:
这里定义来两个管道,TextPipeline管道负责对text文本长度进行判断处理;MongoDBPipeline负责将数据存入数据库

from scrapy.exceptions import DropItem
import pymongo

class TextPipeline(object):
    def __init__(self):
        self.limit = 50

    def process_item(self, item, spider):
        if item['text']:
            if len(item['text']) > self.limit:
                item['text'] = item['text'][0:self.limit].rstrip() + '...'
            return item
        else:
            return DropItem('Missing Text')

class MongoDBPipeline(object):

    def __init__(self, host, port, db):
        self.host = host
        self.port = port
        self.db = db

    @classmethod
    def from_crawler(cls, crawler):
        return cls(host=crawler.settings.get("MONGODB_SERVER"), port=crawler.settings.get("MONGODB_PORT"),
                   db=crawler.settings.get("MONGODB_DB"))

    def open_spider(self, spider):
        self.client = pymongo.MongoClient(self.host, self.port)
        # set the db to be operated
        self.db_conn = self.client[self.db]

    def process_item(self, item, spider):
        # name = item.__class__.__name__
        name = item.getCollection()
        # 这个name是Collection的名字,相当于表明,这就要求item名字要以表名来命名
        count = self.db_conn[name].find(item.getId()).count()
        if count == 0:
            print('插入数据...')
            self.db_conn[name].insert(dict(item))
        else:
            # print('重复数据,更新! praise_nums %d' % item.get_random_id())
            # self.db_conn[name].update({"url_object_id": item.getId()},
            #  {"$set": {"praise_nums": item.get_random_id()}})
            print('重复数据,忽略')
        return item

    def close_spider(self, spider):
        self.client.close()

上面代码里面,需要从setting里读取数据库链接信息,所以需要在setting.py里进行配置,注意修改成你的MongoDB连接信息;同时开启管道配置,把上述管道配置到ITEM_PIPELINES下,注意,数字越低优先级越高,如下:

ITEM_PIPELINES = {
   'mini_scrapy.pipelines.TextPipeline': 100,
   'mini_scrapy.pipelines.MongoDBPipeline': 150
}

MONGODB_SERVER = "48.97.213.218"
MONGODB_PORT = 27017
MONGODB_DB = "tuan"

2、增加Item唯一性判断,在实际项目开发中往往需要反复运行爬虫,所以需要给每个爬取到的item项增加一个唯一性标记,以便重复运行爬虫时,爬取到同样内容不用再插入数据库,同时增加Item相关的方法;主要代码如下,这里还要说明一下,如果单就这一个例子来说没有必要写的那么复杂,但是再接下来的例子中,你会体会到这样写的好处。

# -*- coding: utf-8 -*-
import scrapy
from abc import ABCMeta, abstractmethod

class BaseItem(metaclass=ABCMeta):
    field_list = []  # 字段名

    @abstractmethod
    def clean_data(self):
        pass

    @staticmethod
    @abstractmethod
    def help_fields(fields: list):
        pass

class MongoDBItem(BaseItem):
    @abstractmethod
    def getCollection(self):
        pass

    @abstractmethod
    def getId(self):
        pass

class QuoteItem(scrapy.Item, MongoDBItem):
    field_list = ['text', 'author', 'tags', 'url_object_id']
    table_name = 'sample_saying'

    text = scrapy.Field()
    author = scrapy.Field()
    tags = scrapy.Field()
    url_object_id = scrapy.Field()

    def getCollection(self):
        return self.table_name

    def getId(self):
        return {'url_object_id': self["url_object_id"]}

    def help_fields(self):
        for field in self.field_list:
            print(field, "= scrapy.Field()")

    def clean_data(self):
        pass

8 小结

这个例子可以让你快速了解使用Scrapy框架开发爬虫的步骤,通过例子,可以看到框架代码中各个文件的作用,以及调用逻辑,所以并没有花时间去讲述正则表达式,如需要代码请下载本工程

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容