深度学习之偏差与方差

机器学习就是利用训练数据去训练一个模型(model),使得这个模型尽可能逼近真实,用来衡量模型好坏的依据是模型的误差,由偏差和方差两部分组成。

Bias(偏差)

模型在样本上的输出与真实值之间的误差,即模型本身的精准度,反应出算法的拟合能力。

Variance(方差)

模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性,反应出预测的波动情况。

偏差与方差的关系

偏差与方差之间按照高低,可以组合成四种关系,如下图所示

偏差与方差关系

1、低偏差低方差

表示模型既准确又稳定,效果最好,但是现实中这种情形很少遇见。

2、低偏差高方差

表示模型准确但是稳定性差,对验证数据&测试数据的拟合能力差,即是模型的泛化能力差,产生了过拟合(Overfitting)。

3、高偏差低方差

表示模型的准确度差,对数据的拟合能力弱,产生了欠拟合(Underfitting)。

4、高偏差高方差

表示模型既不准确又不稳定。

过拟合与欠拟合

由上面的分析可知,高方差往往预示着过拟合,高偏差则是欠拟合。

避免欠拟合(拟合太差)

1、增加训练样本数据

2、设计更复杂的神经网络模型

3、增加迭代次数

4、更好的优化函数

5、调整超参数值

避免过拟合(拟合过度,泛化太差)

1、设计更简单的神经网络模型

2、增加训练样本数据

3、正则化。在损失函数后面添加上L2正则项

4、使用dropout。随机性使得网络中的部分神经元失效,效果上类似将模型变得更简单。

5、调整超参数值
6、尝试其他模型

7、提前结束训练(early stopping)。即是提前结束优化损失函数。

简单小结

在实际工程中,通常可以按下面的来操作

贝叶斯(最优)误差-理论上的最小误差值(通常比人类误差小)

可避免偏差-训练误差 与 贝叶斯误差 之间的差值

方差-验证集误差 与 训练误差 的差值

当 可避免偏差 大于 方差 时,发生 欠拟合。

当 方差 大于 可避免偏差 时,发生 过拟合。

在训练模型时对照以上描述,有助于定位问题,更快找到最适合的模型。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容