文本分类调研

持续更新中

Introduction

1. Definition

什么是文本分类,即我们常说的text classification,简单的说就是把一段文本划分到我们提前定义好的一个或多个类别。可以说是属于document classification的范畴。
Input:
a document d
a fixed set of classes C = {c1, c2, ... , cn}
Output:
a predicted class ci from C

2. Some simple application

  1. spam detection
  2. authorship attribution
  3. age/gender identification
  4. sentiment analysis
  5. assigning subject categories, topics or genes
    ......

Traditional methods

1. Naive Bayes

two assumptions:

  1. Bag of words assumption:
    position doesn't matter
  2. Conditional independency:

to compute these probabilities:

add-one smoothing to prevent the situation in which we get zero:(you can add other number as well)

to deal with unknown/unshown words:

main features:

  1. very fast, low storage requirements
  2. robust to irrelevant features
  3. good in domains with many equally important features
  4. optimal if the indolence assumption hold
  5. lacks accuracy in general

2. SVM

cost function of SVM:

2. SVM decision boundary
when C is very large:

about kernel:

until now,it seems that the SVM are only applicable to two-class classification.

Comparing with Logistic regression:

while applying SVM and Logistic regression to text classification, all you need to do is to get the labeled data and find a proper way to represent the texts with vectors (you can use one-hot representation , word2vec, doc2vec ......)

Neural network methods

1. CNN

(1) the paper Convolutional Neural Networks for Sentence Classification which appeared in EMNLP 2014
(2) the paper A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

The model uses multiple filters to obtain multiple features. These features form the penultimate layer and are passed to a fully connected softmax layer whose output is the probability distribution over labels.

For regularization we employ dropout on the penultimate layer with a constraint on l2-norms of the weight vectors. Dropout prevents co-adaptation of hidden units by randomly dropping out.

Pre-trained Word Vectors
We use the publicly available word2vec vectors that were trained on 100 billion words from Google News.

Results

There is simplified implementation using Tensorflow on Github:https://github.com/dennybritz/cnn-text-classification-tf

2. RNN

the paper Hierarchical Attention Networks for Document Classification which appeared in NAACL 2016

in this paper we test the hypothesis that better representations can be obtained by incorporating knowledge of document structure in the model architecture

  1. It is observed that different words and sentences in a documents are differentially informative.
  2. Moreover, the importance of words and sentences are highly context dependent.
    i.e. the same word or sentence may be dif- ferentially important in different context

Attention serves two benefits: not only does it often result in better performance, but it also provides in- sight into which words and sentences contribute to the classification decision which can be of value in applications and analysis

Hierarchical Attention Network

If you want to learn more about Attention Mechanisms:http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

In the model they used the GRU-based sequence encoder.
1. Word Encoder:

2. Word Attention:

3. Sentence Encoder:

4. Sentence Attention:

5. Document Classification:
Because the document vector v is a high level representation of document d

j is the label of document d

Results

There is simplified implementation written in Python on Github:https://github.com/richliao/textClassifier

References

https://www.cs.cmu.edu/%7Ediyiy/docs/naacl16.pdf
https://www.cs.cmu.edu/%7Ediyiy/docs/naacl16.pdf
https://www.coursera.org/learn/machine-learning/home/
https://www.youtube.com/playlist?list=PL6397E4B26D00A269

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容

  • 唐风吹过宋室的梦 那一笔挥毫凌空 绣点了牡丹红 蝶衣在月光下舞动 忆往事小叙如风 几世情缘若断流水 花飘香悲了谁 ...
    夜已空阅读 171评论 0 4
  • 一个北方人真的被江浙的醉蟹醉倒了
    海岸线177阅读 158评论 0 1
  • 枕上听雨久未眠,心思辗转几时鼾? 雨下叮零声如脆,静赏仙乐醉音梵。 落花春雨恼春愁,新赞春暖又春寒。 何时心头淋洁...
    me挥之即去阅读 175评论 0 0
  • 周五,是儿子满月后从姥姥姥爷、爷爷奶奶家游历一圈后回楼上住的日子。 这小子已经习惯了爷爷奶奶家的环境,反而到了自己...
    此木无言阅读 163评论 0 0