Chapter 3

Chapter 3: Finite Markov Decision Processes

Basic Definitions

MDP is the most basic formulation of sequential decision process under the assumption of Markov property.

  1. State: The state must include information about all aspects of the past agent-environment interaction that make a difference for the future.
  2. Action
  3. Reward: The reward defines what we want to achieve instead of how we want to achieve it.
  4. Dynamics: p(s', r | s, a)
  5. Return: Return is defined as some function of the reward sequence
    For episodic tasks, we have G_t = R_{t+1} + \cdots + R_T
    For continuing tasks, we have G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots
    They can be unified under the same framework as G_t = \sum_{k=0}^\infty \gamma^{k} R_{t+k+1} by adding an absorbing state with zero reward to the terminal of episodic tasks
    The recursive form of return is G_t = R_{t+1} + \gamma G_{t+1}, which forms the basis of Bellman equations

Further notes:

  1. In the RL book, the reward obtained from taking action A_t in state S_t at time step t is denoted as R_{t+1} instead of R_t;
  2. RL beyond MDP assumption is an important research topic (also discussed in the RL book)
  3. The representation of the states and actions has a great influence on the learning process, but is beyond the scope of the RL book (many recent works actually focus on this topic)
  4. The RL book focuses on scalar reward signal, but there are also some recent works focusing on multi-objective reward signal in vector form

Policies and Value Functions

Value function is the expected return of a state or a state-action pair
Policy is a mapping from states to the probabilities of selecting each possible action
Value functions are defined w.r.t. particular policies, i.e., v_\pi (s) = \mathbb{E}_\pi [G_t | S_t = s], \quad q_\pi (s, a) = \mathbb{E}_\pi [G_t | S_t = s, A_t = a]
Based on the simple relationships of v_\pi (s) = \sum_a \pi (a | s) q_\pi (s, a), \quad q_\pi (s, a) = \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_\pi (s') \big ], we can derive the Bellman equation which expresses the relationship between the value of a state (state-action pair) and the values of its successor states (state-action pairs), i.e., v_\pi (s) = \sum_a \pi (a | s) \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_\pi (s') \big ] \\ q_\pi (s, a) = \sum_{s', r} p(s', r | s, a) \big [ r + \gamma \sum_{a'} \pi (a' | s') q_\pi (s', a') \big ]. The value function v_\pi is the unique solution to its Bellman equation by solving a set of |\mathcal{S}| linear equations. Notice that the assumption here is that the system dynamics p(s', r | s, a) is known.
Another useful tool to visualize the recursive relationships of value functions is backup diagram.

Optimal Policies and Optimal Value Functions

Definition of a "better" policy: \pi \geq \pi' if and only if v_\pi (s) \geq v_{\pi'} (s) for all s \in \mathcal{S}.
There always exists an optimal value function v_*(s) and q_*(s, a) and its corresponding optimal policies (potentially more than one) for MDPs. Intuitively, if a policy is not optimal, we can always improve the value of a state s by changing the policy for this specific state. The improvement in the value of s will then backpropagate to all the values of the states which can reach s in the state transition graph. In this way, we can always achieve a better policy and gradually reach the optimal policy.
Based on the following simple relations, i.e., v_\pi (s) = \sum_a \pi (a | s) q_\pi (s, a) \rightarrow v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a) \\ \quad q_\pi (s, a) = \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_\pi (s') \big ] \rightarrow q_*(s, a) = \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_*(s') \big ], we have the Bellman optimality equation without reference to any specific policy as v_*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_*(s') \big ] \\ q_*(s, a) = \sum_{s', r} p(s', r | s, a) \big [ r + \gamma \max_{a'} q_*(s', a') \big ].
The optimal policy can be easily derived by greedy search over the state values.
Solving the Bellman optimality equation requires solving |\mathcal{S}| nonlinear equations based on the assumption of fully known system dynamics and Markov property. Even these two assmuptions are satisfied, solving the equations is still computationally infeasible when the state space is very large. Consequently, different RL methods mainly focus on how to solve the Bellman optimality equation approximately.

Further notes:
The MDP formulation of RL makes it closely related to (stochastic) optimal control.

Reinforcement learning adds to MDPs a focus on approximation and incomplete information for realistically large problems.

The online nature of reinforcement learning makes it possible to approximate optimal policies in ways that put more effor into learning to make good decisions for frequently encountered states, at the expense of less effort for infrequently encountered states.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351