1.数据分析之Numpy教程

1.快速构造一个矩阵

  • 构造一个3*5的全为0的矩阵
a = np.zeros(shape=(3, 5), dtype=int)
print(a)
[[0 0 0 0 0]
 [0 0 0 0 0]
 [0 0 0 0 0]]
  • 构造一个2*4的全为1的矩阵
a = np.ones(shape=(2, 4), dtype=int)
print(a)
[[1 1 1 1]
 [1 1 1 1]]
  • 构造一个全为666的矩阵
a = np.full((3, 5), 666)
print(a)
[[666 666 666 666 666]
 [666 666 666 666 666]
 [666 666 666 666 666]]
  • 构造一个3*5,元素是[0,10)之间随机数的矩阵
a = np.random.randint(0, 10, (3, 5))
print(a)
[[7 5 0 9 3]
 [7 3 9 8 7]
 [9 1 6 9 7]]
  • 构造一个3*5,所有元素符合均值为0,方差为1的正态分布的随机数的矩阵
a = np.random.normal(0, 1, (3, 5))
print(a)
[[ 0.43121389 -1.45724221  0.84369408 -1.62208387  0.42111614]
 [-2.70974994  0.46920864  1.48373216 -1.72006643 -0.29006381]
 [-0.70056842  0.22743593  0.6276454  -0.78630736 -1.17294585]]
  • 生成一个对角阵
b = np.mat(np.eye(3, 3, dtype=int))
print(b)
# 生成一个3*3的对角矩阵
[[1 0 0]
 [0 1 0]
 [0 0 1]]
  • 生成一个对角线为指定数的对角矩阵
b = np.mat(np.diag([1, 2, 3]))
print(b)
[[1 0 0]
 [0 2 0]
 [0 0 3]]

2.矩阵的常用操作

a = np.mat([[1, 1, 1], [2, 3, 6], [4, 5, 7]])
[[1 1 1]
 [2 3 6]
 [4 5 7]]
  • 常用的查询方法
print(a.ndim)  # 查询几维数组 2
print(a.shape)  # 查询几行几列 (3, 3)
print(a.size)  # 查询元素个数 9
print(a[1, 1])  # 输出1行1列(0开始算起)元素 3
print(a.max())  # 计算矩阵中最大元素 7
print(max(a[:, 1]))  # 计算第一列中的最大值,得到的是矩阵 [[5]]
print(a[1, :].max())  # 计算第二行的最大值,得到一个数 6
print(np.max(a, 0))  # 计算所有列的最大值
[[4 5 7]]
print(np.max(a, 1))  # 计算所有行的最大值
[[1]
 [6]
 [7]]
print(np.argmax(a, 0))  # 求所有列的最大值的索引
[[2 2 2]]
print(np.argmax(a[1, :]))  # 计算第二行的最大值在该行的索引 2
  • 矩阵的拆分
print(a[:2, :2])  # 从原矩阵中分割出(0-2)*(0-2)的子矩阵
[[1 1]
 [2 3]]
  • 矩阵的合并
d1 = np.mat(np.ones((2, 2)))
d2 = np.mat(np.eye(2))
print(d1, d2)
[[1. 1.]
 [1. 1.]]
 [[1. 0.]
 [0. 1.]]
d3 = np.vstack((d1, d2))  # 两个矩阵按列合并
print(d3)
[[1. 1.]
 [1. 1.]
 [1. 0.]
 [0. 1.]]
d4 = np.hstack((d1, d2))
print(d4)  # 按行合并
[[1. 1. 1. 0.]
 [1. 1. 0. 1.]]

3.矩阵的运算

  • 一个1n矩阵与一个n1矩阵相乘
b1 = np.mat([1, 2, 3])
b2 = np.mat([[3], [2], [1]])
print(b1, b2)
b = b1 * b2
print(b)
[[1 2 3]]
 [[3]
 [2]
 [1]]
[[10]]
  • 矩阵的点乘
b1 = np.mat([1, 2])
b2 = np.mat([3, 4])
print(b1, b2)
b = np.multiply(b1, b2)
print(b)
[[1 2]] [[3 4]]
[[3 8]]
  • 矩阵与数相乘
b1 = np.mat([1, 1])
b = b1 * 2
print(b)
# 矩阵与数的点乘
[[2 2]]
  • 使用mat方法构建的矩阵求逆矩阵
c1 = np.mat(np.eye(2, 2)*0.5)  # 构建一个2行2列的对角矩阵,元素为0.5
print(c1)
c = c1.I
print(c)
[[0.5 0. ]
[0.  0.5]]
[[2. 0.]
[0. 2.]]
  • 使用array方法构建的矩阵求逆矩阵
c1 = np.array([[1, 2], [3, 4]])
c = np.linalg.inv(c1)
print(c)
[[-2.   1. ]
 [ 1.5 -0.5]]
  • 使用mat方法构建的矩阵求转置
c1 = np.mat([[1, 2], [3, 4]])
c = c1.T
print(c)
[[1 3]
 [2 4]]
  • 使用array方法构建的矩阵求转置
c1 = np.array([[1, 2], [3, 4]])
c = c1.transpose()
print(c)
[[1 3]
 [2 4]]
  • 求行列式的值
c = np.array([[1, 2], [3, 4]])
print(np.linalg.det(c))
-2.0000000000000004
  • 求矩阵的特征值与特征向量
c = np.array([[1, 2], [3, 4]])
print(np.linalg.eig(c))
# 所得的元组中,第一个为特征值元组,第二个为相对应的特征向量
(array([-0.37228132,  5.37228132]), array([[-0.82456484, -0.41597356],
       [ 0.56576746, -0.90937671]]))
  • 求解线性方程组
c = np.array([[1, 2], [3, 4]])
d = np.array([[5], [10]])
print(np.linalg.solve(c, d))
"""
求解线性方程组
1X + 2Y = 5
3X + 4Y = 10
"""
[[0. ]
 [2.5]]
  • 求列之和与行之和
c = np.mat([[1, 1], [2, 3], [4, 5]])
c1 = c.sum(axis=0)
print(c1)
# 求列和,得到1*2的矩阵
c2 = c.sum(axis=1)
print(c2)
# 求行和,得到3*1的矩阵
[[7 9]]
[[2]
 [5]
 [9]]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容

  • numpy.random.randint Return random integers fromlow(inclu...
    onepedalo阅读 1,175评论 0 1
  • 基础篇NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(...
    oyan99阅读 5,120评论 0 18
  • 在上一篇中我们非常简要地介绍了 ScaLAPACK 软件。虽然 ScaLAPACK 在设计上作了很多工作使其方法接...
    自可乐阅读 2,519评论 29 2
  • 一.NumPy的引入 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列...
    wlj1107阅读 1,007评论 0 2
  • 这是16年5月份编辑的一份比较杂乱适合自己观看的学习记录文档,今天18年5月份再次想写文章,发现简书还为我保存起的...
    Jenaral阅读 2,739评论 2 9