内存布局
代码段:保存程序二进制。
bss:一般保存全局静态变量等。
data:保存初始化的全局变量,静态变量。
栈:保存函数,方法。iOS开发中一般为0x7段。
堆:通过alloc出来的对象,保存在堆里。 0x6段
TaggedPointer
TaggedPointer为苹果为内存优化提供的一个方案。
主要存储一些小字节的数据。
TaggesPointer被设计为2大部分,标志位区和数据区。
由特殊标志位来标志类型。使得读写更加效率。
SideTables
哈希表
先说说存储结构,实际上在我们学过的数据结构可以归结为两类:连续的的存储结构和不联系的存储结构,其代表分别为数组和链表。而我们学过的堆栈,队列,树,图,都可以用这两种结构来实现。连续的存储结构——数组,在数据的查找和修改上具有很好的优点,很方便,时间复杂度很小。但是在数据的增添和删除上则显得很麻烦,空间复杂度很大。而非连续,非顺序的存储结构——链表恰和数组相反,数据的增添和删除容易,空间复杂度很小,查找和修改复杂,时间复杂度很大。
那么有没有一种数据结构能折衷一下数组和链表的优缺点呢?那就是——哈希表,既满足了数据的查找和修改很容易,同时又不占用很多空间的特点。
哈希表是基于哈希函数的,哈希表中的元素是有哈希函数确定的,哈希表作为一种数据结构,我们用哈希表来存储数据,在保存的时候存入的是一个<key—value>的结构,value由哈希函数作用于key上得到。但是存在一个哈希冲突问题,那就是当你用hash函数作用在两个互不相同的key上,得到的value值相等。
在runtime中,维护着一个sideTables,他是一个哈希表。
sideTables由多个SideTable组成。
sideTable又由一个自旋锁slock,一个引用计数表refcnts,一个弱引用表weak_table组成。
Retain和Release
- Retain
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
if (isTaggedPointer()) return (id)this;
bool sideTableLocked = false;
bool transcribeToSideTable = false;
isa_t oldisa;
isa_t newisa;
do {
transcribeToSideTable = false;
oldisa = LoadExclusive(&isa.bits);
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
if (!tryRetain && sideTableLocked) sidetable_unlock();
if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
else return sidetable_retain();
}
// don't check newisa.fast_rr; we already called any RR overrides
if (slowpath(tryRetain && newisa.deallocating)) {
ClearExclusive(&isa.bits);
if (!tryRetain && sideTableLocked) sidetable_unlock();
return nil;
}
uintptr_t carry;
newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry); // extra_rc++
if (slowpath(carry)) {
// newisa.extra_rc++ overflowed
if (!handleOverflow) {
ClearExclusive(&isa.bits);
return rootRetain_overflow(tryRetain);
}
// Leave half of the retain counts inline and
// prepare to copy the other half to the side table.
if (!tryRetain && !sideTableLocked) sidetable_lock();
sideTableLocked = true;
transcribeToSideTable = true;
newisa.extra_rc = RC_HALF;
newisa.has_sidetable_rc = true;
}
} while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));
if (slowpath(transcribeToSideTable)) {
// Copy the other half of the retain counts to the side table.
sidetable_addExtraRC_nolock(RC_HALF);
}
if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
return (id)this;
}
当调用retain时,isa.bits中的extra_rc+1
当extra_rc溢出时,sideTable.refcnts+1。
而之前提到的TaggedPointer是不进行引用计数的。
-
retainCount方法
返回extra_rc+1的值,如果sidetable_rc有值再加上sideTable中的值。
3.release
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
if (isTaggedPointer()) return false;
bool sideTableLocked = false;
isa_t oldisa;
isa_t newisa;
retry:
do {
oldisa = LoadExclusive(&isa.bits);
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
if (sideTableLocked) sidetable_unlock();
return sidetable_release(performDealloc);
}
// don't check newisa.fast_rr; we already called any RR overrides
uintptr_t carry;
newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry); // extra_rc--
if (slowpath(carry)) {
// don't ClearExclusive()
goto underflow;
}
} while (slowpath(!StoreReleaseExclusive(&isa.bits,
oldisa.bits, newisa.bits)));
if (slowpath(sideTableLocked)) sidetable_unlock();
return false;
underflow:
// newisa.extra_rc-- underflowed: borrow from side table or deallocate
// abandon newisa to undo the decrement
newisa = oldisa;
if (slowpath(newisa.has_sidetable_rc)) {
if (!handleUnderflow) {
ClearExclusive(&isa.bits);
return rootRelease_underflow(performDealloc);
}
// Transfer retain count from side table to inline storage.
if (!sideTableLocked) {
ClearExclusive(&isa.bits);
sidetable_lock();
sideTableLocked = true;
// Need to start over to avoid a race against
// the nonpointer -> raw pointer transition.
goto retry;
}
// Try to remove some retain counts from the side table.
size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF);
// To avoid races, has_sidetable_rc must remain set
// even if the side table count is now zero.
if (borrowed > 0) {
// Side table retain count decreased.
// Try to add them to the inline count.
newisa.extra_rc = borrowed - 1; // redo the original decrement too
bool stored = StoreReleaseExclusive(&isa.bits,
oldisa.bits, newisa.bits);
if (!stored) {
// Inline update failed.
// Try it again right now. This prevents livelock on LL/SC
// architectures where the side table access itself may have
// dropped the reservation.
isa_t oldisa2 = LoadExclusive(&isa.bits);
isa_t newisa2 = oldisa2;
if (newisa2.nonpointer) {
uintptr_t overflow;
newisa2.bits =
addc(newisa2.bits, RC_ONE * (borrowed-1), 0, &overflow);
if (!overflow) {
stored = StoreReleaseExclusive(&isa.bits, oldisa2.bits,
newisa2.bits);
}
}
}
if (!stored) {
// Inline update failed.
// Put the retains back in the side table.
sidetable_addExtraRC_nolock(borrowed);
goto retry;
}
// Decrement successful after borrowing from side table.
// This decrement cannot be the deallocating decrement - the side
// table lock and has_sidetable_rc bit ensure that if everyone
// else tried to -release while we worked, the last one would block.
sidetable_unlock();
return false;
}
else {
// Side table is empty after all. Fall-through to the dealloc path.
}
}
// Really deallocate.
if (slowpath(newisa.deallocating)) {
ClearExclusive(&isa.bits);
if (sideTableLocked) sidetable_unlock();
return overrelease_error();
// does not actually return
}
newisa.deallocating = true;
if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;
if (slowpath(sideTableLocked)) sidetable_unlock();
__sync_synchronize();
if (performDealloc) {
((void(*)(objc_object *, SEL))objc_msgSend)(this, SEL_dealloc);
}
return true;
}
extra_rc - 1
当extra_rc下溢出时,查找sideTable。如果sideTable也没有时,对this发送SEL_dealloc方法进行析构。