kafka性能测试

1. 测试环境

测试使用到三台机器,机器配置如下:

共同配置:

Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz、Cores:4、Threads:2

32GB内存

1000Mb/sec网卡

差异化配置

2TB、7200rpm、SATA 3.1, 6.0 Gb/s (current: 6.0 Gb/s)

1TB、7200rpm、SATA 3.1, 6.0Gb/s (current: 6.0 Gb/s)

250G、SSD、SATA3.1, 6.0 Gb/s (current: 6.0 Gb/s)

三台机器操作系统采用centos7,Release版本为7.5.1804。其中两台机器用来搭建kafka集群,另一台机器作为客户机测试。



2. producer吞吐率

本次测试producer的吞吐率,因此不存consumer的消费场景,使用官方提供的测试工具kafka-producer-perf-test.sh来测试。

测试参数:

测试结果:

在2个broker的集群中,partition的分区数为4时,性能最优,但随着partition的增长,吞吐率呈下降区势。同时增加集群中broker数与分区数,可提升吞吐率。


在2个broker的集群中,partition的分区数为4时,以CPU对应的线程数为性能最优,随着生产者线程数的增加,吞吐率呈下降区势。


针对kafka提供的3种压缩算法进行对比,在相同条件下,采用LZ4算法,性能最优。

在设置message.size大小不变的前提下,不断增加batch.size的大小,但小于最大值10000,当处于1000时,性能最优,随着batch.size继续增大,吞吐率下随趋势明显。

其它参数不变,不断增加message.size的大小,即每条消息的大小,吞吐率会急剧下降。消息的大小需按实际业务来度量,在每条消息为3072B时,每秒处理的数据总量最大。

partition

threads

compression

batch.size

message.size

3. consumer吞吐率

本次测试consumer的吞吐率,使用官方提供的测试工具kafka-consumer-perf-test.sh来测试。

测试参数:

测试结果:

在相同的参数配置下,fetchsize从2m至20m变化,在10m上下时性能最优,当然fetch.threads发生变化时,在某一fetch.size上下仍是性能最优。

采用snapyy算法消费性能最优。

获取消息的线程数与实际吞吐率影响不大。

第一次测试数据下图:

第二次测试数据下图:

在增加分区数与消费线程数时,在小于3个分区时,3个分区与3个消费线程性能最优,在其他条件不改变的前提下,再进一步增加分区数与消费程数时,实际吞吐量变化不大。

生产者与消费者同时写入与读取,不同压缩算法,snapyy方式性能最优,相比于单独消费场景,性能下降较大。

fetch.size

compression

fetch.threads

partitions与threads

producer与consume同时写入与读取

4. 配置建议

基于kafka的高度可配置的特性,可以应用到不同的业务场景,比如,实时性较强的跟踪用户在页面上的行为动作、实时性不高但可靠性很高的信用卡支付操作的处理等。

可靠性配置:

复制系数,针对topic级别的配置参数是replication.factor,以本次测试为例,有3个broker实例,建议合理的复制系数为1-3,以3为例,也就是每个分区会被3个broker各复制一次,即每个broker保存一个分区,即使在2个broker失效的情况下,仍然可以向topic写入消息或从topic读取消息。总结如下:

如果复制系数为N,那么在N-1个broker失效的情况下,仍然具备读写能力,因此更高的复制系数会带来更高的可靠性,但另一方面,N个复制系数需要至少N个broker,而且会有N份数据副本(副本包含leader与follower)。

不完全的leader选举,unclean.leader.election.enable在broker级别上进行配置,默认值为true(仅在当前版本为true,后续高版本为false),官方在kafka高版本发行时,修改了这个默认值,暂时理解为官网的推荐设置,但对于实时性较高的业务,比如实时统计用户访问量的分析,一般会启用这个配置,即设置为true,但对于可靠性较高的业务,比如银行的业务,宁可花费几分钟或几个小时的延时后再处理像信用卡支付的业务,也不会冒险处理错误的消息。因此,按真实的业务场景来设置即为合理。

最少同步副本,min.insync.replicas默认是1,本次测试中采用了3个broker,因此这个值可以设置1-3,当然如果选择3时,即为最少要同步3个副本才可以向分区写入数据,即为真正的提交,需要注意的是如果有1个broker出现问题,无法同步副本,那么剩下的broker就会停止生产者的所有请求,并抛出NotEnouqhReplicasException给生产者,直至问题broker恢复,此时消费者可以正常读取消息。

producer发送确认,生产者可以选择3种不同模式的确认,acks为0时,只要生产者把消息发送出去,即认为已成功写入broker,这种模式下运行速度非常快,吞吐率和带宽利用率非常高,不过采用这种模式风险较高,容易丢失一些消息。一般压力测试都是基于这个模式的。即使实时性较高的系统,也不建议采用该模式。

acks为1时,即为leader收到消息并写入分区数据文件(不一定同步到磁盘)后,提交成功,返回确认响应。

acks为-1或all时,即leader收到消息后,会等待所有同步副本都收到消息,才会返回确认响应。

producer失败重试参数,当生产者没有收到成功的响应,重试发送次数,当前版本默认为0,根据实际业务来设置该参数,并非越大越好,也不建议设置为0,生产者收到的错误会包括2种,一种是可恢复性错误,一种是不可恢复性错误,遇到可恢复性的错误时,可以通过重试来解决,不可恢复性错误,只能由开发者手动处理。但由于网络原因造成的无法收到成功响应,此时如果无限次的重试发送,会造成分区内存在重复消息,增加了消费者读取消息时的业务处理的复杂度。因此分析实际业务场景,谨慎设置。

consumer auto.offset.reset,默认值为latest,即在没有offset时,消费者会从分区的末尾开始读取数据,减少读取重复消息的可能性,但可能会错过一些消息。设置为earliest,当出现offset不存在的情况时,从分区的开始位置读取数据,这样会读取大量重复消息,由消费端的业务逻辑来处理重复消息。增加了业务的复杂度。

consumer auto.commit.interval.ms,默认值为5000ms,即5秒提交一次,可以通过该参数来设置提交的频度,一般来说,提交频度越高,越会带来更高的系统开销,可靠性也随之提高。

实时类业务

实时类业务,把零延时作为第一考虑因素,比如聊天室、会议室、直播类似系统等,在保证最小延时的基础上,适当设置可靠性相关参数。建议可靠性参数如下:

replication.factor:1

unclean.leader.election.enable:true

min.insync.replicas:1

acks:0

retries:0

近实时类业务

即可接受一定范围内的延时,比如实时计算用户访问量等类似web监控类业务,在保证最小延时的基础上,适当设置可靠性相关参数。建议可靠性参数如下:

replication.factor:2

unclean.leader.election.enable:true

min.insync.replicas:2

acks:1

retries:1/2/3

consumer auto.commit.interval.ms:1000ms

consumer auto.offset.reset:latest

非实时类业务

非实时类业务,即可以允许一定时间的延时,从而来保证系统更高的可靠性。以3个broker以例,建议可靠性参数如下:

replication.factor:3

unclean.leader.election.enable:false

min.insync.replicas:2/3

acks:all

retries:MAX_INT

consumer auto.commit.interval.ms:500ms

consumer auto.offset.reset:earliest

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343