你真的会写单例吗?

你真的会写单例吗?

摘录来源

单例的正确姿势

Java单例模式可能是最简单也是最常用的设计模式,一个完美的单例需要做到哪些事呢?

  1. 单例(这不是废话吗)
  2. 延迟加载
  3. 线程安全
  4. 没有性能问题
  5. 防止序列化产生新对象
  6. 防止反射攻击

可以看到,真正要实现一个完美的单例是很复杂的,那么,让我这个司机带大家看一看正确姿势的单例。

最佳实践单例之枚举

没错,直接就上最佳实践,就是这么任性

这货长这样:

public enum Singleton{  
    INSTANCE;  
}    

如果你不熟悉枚举,可能会说:这货是啥?!

这种方式的好处是:

  1. 利用的枚举的特性实现单例
  2. 由JVM保证线程安全
  3. 序列化和反射攻击已经被枚举解决

调用方式为Singleton.INSTANCE, 出自《Effective Java》第二版第三条: 用私有构造器或枚举类型强化Singleton属性。
关于单例最佳实践的讨论可以看Stackoverflow:what-is-an-efficient-way-to-implement-a-singleton-pattern-in-java

下面将会介绍更为常见的单例模式,但是均未处理反射攻击,如果想了解更多可以看这篇文章:如何防止单例模式被JAVA反射攻击

最简单的单例之饿汉式

public class Singleton {  
    private static final Singleton INSTANCE = new Singleton();  
    // 私有化构造函数  
    private Singleton(){}  
  
    public static Singleton getInstance(){  
        return INSTANCE;  
    }  
}   

这种单例的写法最简单,但是缺点是一旦类被加载,单例就会初始化,没有实现懒加载。而且当实现了Serializable接口后,反序列化时单例会被破坏。
实现Serializable接口需要重写readResolve,才能保证其反序列化依旧是单例:

public class Singleton implements Serializable {  
    private static final Singleton INSTANCE = new Singleton();  
    // 私有化构造函数  
    private Singleton(){}  
  
    public static Singleton getInstance(){  
        return INSTANCE;  
    }  
  
    /** 
     * 如果实现了Serializable, 必须重写这个方法 
     */  
    private Object readResolve() throws ObjectStreamException {  
        return INSTANCE;  
    }  
}    

OK,反序列化要注意的就是这一点,下面的内容中就不再复述了。

最体现技术的单例之懒汉式

懒汉式即实现延迟加载的单例,为上述饿汉式的优化形式。而因其仍需要进一步优化,往往成为面试考点,让我们一起来看看坑爹的“懒汉式”
懒汉式的最初形式是这样的:

public class Singleton {  
    private static Singleton INSTANCE;  
    private Singleton (){}  
  
    public static Singleton getInstance() {  
     if (INSTANCE == null) {  
         INSTANCE = new Singleton();  
     }  
     return INSTANCE;  
    }  
}   

这种写法就轻松实现了单例的懒加载,只有调用了getInstance方法才会初始化。但是这样的写法出现了新的问题--线程不安全。当多个线程调用getInstance方法时,可能会创建多个实例,因此需要对其进行同步。

如何使其线程安全呢?简单,加个synchronized关键字就行了

public static synchronized Singleton getInstance() {  
    if (INSTANCE == null) {  
        INSTANCE = new Singleton();  
    }  
    return INSTANCE;  
}    

可是...这样又出现了性能问题,简单粗暴的同步整个方法,导致同一时间内只有一个线程能够调用getInstance方法。

因为仅仅需要对初始化部分的代码进行同步,所以再次进行优化:

public static Singleton getSingleton() {  
    if (INSTANCE == null) {               // 第一次检查  
        synchronized (Singleton.class) {  
            if (INSTANCE == null) {      // 第二次检查  
                INSTANCE = new Singleton();  
            }  
        }  
    }  
    return INSTANCE ;  
}   

执行两次检测很有必要:当多线程调用时,如果多个线程同时执行完了第一次检查,其中一个进入同步代码块创建了实例,后面的线程因第二次检测不会创建新实例。
这段代码看起来很完美,但仍旧存在问题,以下内容引用自黑桃夹克大神的如何正确地写出单例模式

这段代码看起来很完美,很可惜,它是有问题。主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。

  1. 给 instance 分配内存
  2. 调用 Singleton 的构造函数来初始化成员变量
  3. 将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了)

但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。
我们只需要将 instance 变量声明成 volatile 就可以了。

public class Singleton {  
    private volatile static Singleton INSTANCE; //声明成 volatile  
    private Singleton (){}  
  
    public static Singleton getSingleton() {  
        if (INSTANCE == null) {                           
            synchronized (Singleton.class) {  
                if (INSTANCE == null) {         
                    INSTANCE = new Singleton();  
                }  
            }  
        }  
        return INSTANCE;  
    }  
  
}   

使用 volatile 的主要原因是其另一个特性:禁止指令重排序优化。也就是说,在 volatile 变量的赋值操作后面会有一个内存屏障(生成的汇编代码上),读操作不会被重排序到内存屏障之前。比如上面的例子,取操作必须在执行完 1-2-3 之后或者 1-3-2 之后,不存在执行到 1-3 然后取到值的情况。从「先行发生原则」的角度理解的话,就是对于一个 volatile 变量的写操作都先行发生于后面对这个变量的读操作(这里的“后面”是时间上的先后顺序)。

但是特别注意在 Java 5 以前的版本使用了 volatile 的双检锁还是有问题的。其原因是 Java 5 以前的 JMM (Java 内存模型)是存在缺陷的,即时将变量声明成 volatile 也不能完全避免重排序,主要是 volatile 变量前后的代码仍然存在重排序问题。这个 volatile 屏蔽重排序的问题在 Java 5 中才得以修复,所以在这之后才可以放心使用 volatile。

至此,这样的懒汉式才是没有问题的懒汉式。

内部类实现单例

public class Singleton {   
    /**  
     * 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例没有绑定关系,  
     * 而且只有被调用到才会装载,从而实现了延迟加载  
     */   
    private static class SingletonHolder{   
        /**  
         * 静态初始化器,由JVM来保证线程安全  
         */   
        private static final Singleton instance = new Singleton();   
    }   
    /**  
     * 私有化构造方法  
     */   
    private Singleton(){   
    }   
  
    public static  Singleton getInstance(){   
        return SingletonHolder.instance;   
    }   
}  

使用内部类来维护单例的实例,当Singleton被加载时,其内部类并不会被初始化,故可以确保当 Singleton类被载入JVM时,不会初始化单例类。只有 getInstance() 方法调用时,才会初始化 instance。同时,由于实例的建立是时在类加载时完成,故天生对多线程友好,getInstance() 方法也无需使用同步关键字。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容

  • 前言 本文主要参考 那些年,我们一起写过的“单例模式”。 何为单例模式? 顾名思义,单例模式就是保证一个类仅有一个...
    tandeneck阅读 2,507评论 1 8
  • 1 场景问题# 1.1 读取配置文件的内容## 考虑这样一个应用,读取配置文件的内容。 很多应用项目,都有与应用相...
    七寸知架构阅读 6,715评论 12 68
  • 单例模式(SingletonPattern)一般被认为是最简单、最易理解的设计模式,也因为它的简洁易懂,是项目中最...
    成热了阅读 4,246评论 4 34
  • 从三月份找实习到现在,面了一些公司,挂了不少,但最终还是拿到小米、百度、阿里、京东、新浪、CVTE、乐视家的研发岗...
    时芥蓝阅读 42,230评论 11 349
  • 我的天空里没有太阳,总是黑夜,但并不暗,因为有东西代替了太阳。虽然没有太阳那么明亮,但对我来说已经足够。凭借着这份...
    呆小逗阅读 124评论 0 0