你真的会写单例吗?
单例的正确姿势
Java单例模式可能是最简单也是最常用的设计模式,一个完美的单例需要做到哪些事呢?
- 单例(这不是废话吗)
- 延迟加载
- 线程安全
- 没有性能问题
- 防止序列化产生新对象
- 防止反射攻击
可以看到,真正要实现一个完美的单例是很复杂的,那么,让我这个司机带大家看一看正确姿势的单例。
最佳实践单例之枚举
没错,直接就上最佳实践,就是这么任性
这货长这样:
public enum Singleton{
INSTANCE;
}
如果你不熟悉枚举,可能会说:这货是啥?!
这种方式的好处是:
- 利用的枚举的特性实现单例
- 由JVM保证线程安全
- 序列化和反射攻击已经被枚举解决
调用方式为Singleton.INSTANCE, 出自《Effective Java》第二版第三条: 用私有构造器或枚举类型强化Singleton属性。
关于单例最佳实践的讨论可以看Stackoverflow:what-is-an-efficient-way-to-implement-a-singleton-pattern-in-java
下面将会介绍更为常见的单例模式,但是均未处理反射攻击,如果想了解更多可以看这篇文章:如何防止单例模式被JAVA反射攻击
最简单的单例之饿汉式
public class Singleton {
private static final Singleton INSTANCE = new Singleton();
// 私有化构造函数
private Singleton(){}
public static Singleton getInstance(){
return INSTANCE;
}
}
这种单例的写法最简单,但是缺点是一旦类被加载,单例就会初始化,没有实现懒加载。而且当实现了Serializable接口后,反序列化时单例会被破坏。
实现Serializable接口需要重写readResolve,才能保证其反序列化依旧是单例:
public class Singleton implements Serializable {
private static final Singleton INSTANCE = new Singleton();
// 私有化构造函数
private Singleton(){}
public static Singleton getInstance(){
return INSTANCE;
}
/**
* 如果实现了Serializable, 必须重写这个方法
*/
private Object readResolve() throws ObjectStreamException {
return INSTANCE;
}
}
OK,反序列化要注意的就是这一点,下面的内容中就不再复述了。
最体现技术的单例之懒汉式
懒汉式即实现延迟加载的单例,为上述饿汉式的优化形式。而因其仍需要进一步优化,往往成为面试考点,让我们一起来看看坑爹的“懒汉式”
懒汉式的最初形式是这样的:
public class Singleton {
private static Singleton INSTANCE;
private Singleton (){}
public static Singleton getInstance() {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
return INSTANCE;
}
}
这种写法就轻松实现了单例的懒加载,只有调用了getInstance方法才会初始化。但是这样的写法出现了新的问题--线程不安全。当多个线程调用getInstance方法时,可能会创建多个实例,因此需要对其进行同步。
如何使其线程安全呢?简单,加个synchronized关键字就行了
public static synchronized Singleton getInstance() {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
return INSTANCE;
}
可是...这样又出现了性能问题,简单粗暴的同步整个方法,导致同一时间内只有一个线程能够调用getInstance方法。
因为仅仅需要对初始化部分的代码进行同步,所以再次进行优化:
public static Singleton getSingleton() {
if (INSTANCE == null) { // 第一次检查
synchronized (Singleton.class) {
if (INSTANCE == null) { // 第二次检查
INSTANCE = new Singleton();
}
}
}
return INSTANCE ;
}
执行两次检测很有必要:当多线程调用时,如果多个线程同时执行完了第一次检查,其中一个进入同步代码块创建了实例,后面的线程因第二次检测不会创建新实例。
这段代码看起来很完美,但仍旧存在问题,以下内容引用自黑桃夹克大神的如何正确地写出单例模式
这段代码看起来很完美,很可惜,它是有问题。主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。
- 给 instance 分配内存
- 调用 Singleton 的构造函数来初始化成员变量
- 将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了)
但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。
我们只需要将 instance 变量声明成 volatile 就可以了。
public class Singleton {
private volatile static Singleton INSTANCE; //声明成 volatile
private Singleton (){}
public static Singleton getSingleton() {
if (INSTANCE == null) {
synchronized (Singleton.class) {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
使用 volatile 的主要原因是其另一个特性:禁止指令重排序优化。也就是说,在 volatile 变量的赋值操作后面会有一个内存屏障(生成的汇编代码上),读操作不会被重排序到内存屏障之前。比如上面的例子,取操作必须在执行完 1-2-3 之后或者 1-3-2 之后,不存在执行到 1-3 然后取到值的情况。从「先行发生原则」的角度理解的话,就是对于一个 volatile 变量的写操作都先行发生于后面对这个变量的读操作(这里的“后面”是时间上的先后顺序)。
但是特别注意在 Java 5 以前的版本使用了 volatile 的双检锁还是有问题的。其原因是 Java 5 以前的 JMM (Java 内存模型)是存在缺陷的,即时将变量声明成 volatile 也不能完全避免重排序,主要是 volatile 变量前后的代码仍然存在重排序问题。这个 volatile 屏蔽重排序的问题在 Java 5 中才得以修复,所以在这之后才可以放心使用 volatile。
至此,这样的懒汉式才是没有问题的懒汉式。
内部类实现单例
public class Singleton {
/**
* 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例没有绑定关系,
* 而且只有被调用到才会装载,从而实现了延迟加载
*/
private static class SingletonHolder{
/**
* 静态初始化器,由JVM来保证线程安全
*/
private static final Singleton instance = new Singleton();
}
/**
* 私有化构造方法
*/
private Singleton(){
}
public static Singleton getInstance(){
return SingletonHolder.instance;
}
}
使用内部类来维护单例的实例,当Singleton被加载时,其内部类并不会被初始化,故可以确保当 Singleton类被载入JVM时,不会初始化单例类。只有 getInstance() 方法调用时,才会初始化 instance。同时,由于实例的建立是时在类加载时完成,故天生对多线程友好,getInstance() 方法也无需使用同步关键字。